Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed.
The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyses an important step in isoprenoid biosynthesis in plants. In Hevea brasiliensis, HMGR is encoded by a small gene family comprised of three members, hmg1, hmg2 and hmg3. We have previously described hmg1 and hmg2 (Plant Mol Biol 16: 567-577, 1991). Here we report the isolation and characterization of hmg3 genomic and cDNA clones. In comparison to hmg1 which is more highly expressed in laticifers than in leaves, the level of hmg3 mRNA level is equally abundant in laticifers and leaves. In situ hybridization experiments showed that the expression of hmg3 is not cell-type specific while hmg1 is expressed predominantly in the laticifers. Primer-extension experiments using laticifer RNA showed that hmg1 is induced by ethylene while hmg3 expression remains constitutive. The hmg3 promoter, like the promoters of most housekeeping genes, lacks a TATA box. Our results suggest that hmg1 is likely to encode the enzyme involved in rubber biosynthesis while hmg3 is possibly involved in isoprenoid biosynthesis of a housekeeping nature.[1]References
- Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Chye, M.L., Tan, C.T., Chua, N.H. Plant Mol. Biol. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg