Isolation and characterization of crystalline methylglyoxal synthetase from Proteus vulgaris.
Methylglyoxal synthetase, which catalyzes the conversion of dihydroxyacetone phosphate to methylglyoxal and inorganic phosphate, has been isolated and crystalized in good yields from Proteus vulgaris. The enzyme was shown to be homogeneous by a variety of criteria and was found to be a dimer (Mr = 135,000; s20,w = 7.2 S) composed of two apparently identical catalytic and physical properties and their interconvertible nature suggest that they do not represent true isozymes. The enzyme is specific for dihydroxyacetone phosphate and does not form methylglyoxal from glyceraldehyde 3-phophate, glyceraldehyde, or dihydroxyacetone. Nonphosphorylated analogs are neither substrates nor competive inhibitors, but a variety of phosphorylated analogs are competitive with respect to dihydroxyacetone phosphate. The enzyme is inhibited by inorganic orthophosphate in a complex manner which is overcome by dihydroxyacetone phosphate in a signoidal manner[1]References
- Isolation and characterization of crystalline methylglyoxal synthetase from Proteus vulgaris. Tsai, P.K., Gracy, R.W. J. Biol. Chem. (1976) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg