The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Chromelin     1,3-dihydroxypropan-2-one

Synonyms: Protosol, Triulose, Dihyxal, Oxantin, Oxatone, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dihydroxyacetone

 

High impact information on Dihydroxyacetone

  • In cells of both pex14-1 and a PEX14 disruption mutant, peroxisomal membrane remnants were evident; these contained the H.polymorpha peroxisomal membrane protein Pex3p together with a small amount of the major peroxisomal matrix proteins alcohol oxidase, catalase and dihydroxyacetone synthase, the bulk of which resided in the cytosol [6].
  • Phylogenetic analysis suggests that the PTS-dependent dihydroxyacetone kinases evolved from an ATP-dependent ancestor [7].
  • Thus, TbAQPs represent mainly water/glycerol/dihydroxyacetone channels involved in osmoregulation and glycerol metabolism in T. brucei [8].
  • We furthermore show that their substrate, dihydroxyacetone (DHA), is toxic to yeast cells and that the detoxification is dependent on functional DAK [9].
  • We show here that dihydroxyacetone, a secretagogue that feeds into glycolysis below the putative oscillator phosphofructokinase, could cause a single initial peak in cytoplasmic free Ca2+ ([Ca2+]i) but did not by itself cause repeated oscillations in [Ca2+]i in mouse pancreatic beta-cells [10].
 

Chemical compound and disease context of Dihydroxyacetone

 

Biological context of Dihydroxyacetone

 

Anatomical context of Dihydroxyacetone

 

Associations of Dihydroxyacetone with other chemical compounds

 

Gene context of Dihydroxyacetone

  • After cloning of the gene onto high-copy-number vectors, transaldolase B (D-sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate dihydroxyacetone transferase; EC 2.2.1.2) was overexpressed up to 12.7 U mg of protein-1 compared with less than 0.1 U mg of protein-1 in wild-type homogenates [28].
  • The level of Pex5p, the receptor involved in import of alcohol oxidase and dihydroxyacetone synthase into peroxisomes, was also reduced in both disruption strains compared to that in wild-type cells [29].
  • A nitrogen-metabolic PTS phosphoryl transfer chain encoded within the rpoN and ptsP operons and a tri-domain regulatory PTS protein encoded within the dha (dihydroxyacetone catabolic) operon, probably serve regulatory roles exclusively [30].
  • KATP channel inhibition mediated by dihydroxyacetone, which gives reducing equivalents directly to complex II of the electron transport system, was similar in Ad-Null-, Ad-UCP2- and Ad-UCP2+Ad-SHP-infected cells [31].
  • [Katz, J., Golden, S. & Wals, P.A. (1976) Proc. Natl Acad. Sci. USA 73, 3433-3437] were the first to report that in hepatocytes isolated from fasted rats and incubated with either dihydroxyacetone, glucose or other sugars, glycogen synthesis was greatly accelerated by addition of amino acids [32].
 

Analytical, diagnostic and therapeutic context of Dihydroxyacetone

References

  1. Crystal structure of the Citrobacter freundii dihydroxyacetone kinase reveals an eight-stranded alpha-helical barrel ATP-binding domain. Siebold, C., Arnold, I., Garcia-Alles, L.F., Baumann, U., Erni, B. J. Biol. Chem. (2003) [Pubmed]
  2. Regulation of the Dha operon of Lactococcus lactis: a deviation from the rule followed by the Tetr family of transcription regulators. Christen, S., Srinivas, A., Bähler, P., Zeller, A., Pridmore, D., Bieniossek, C., Baumann, U., Erni, B. J. Biol. Chem. (2006) [Pubmed]
  3. Utility of leg ultrasonography in suspected symptomatic isolated calf deep venous thrombosis. Simons, G.R., Skibo, L.K., Polak, J.F., Creager, M.A., Klapec-Fay, J.M., Goldhaber, S.Z. Am. J. Med. (1995) [Pubmed]
  4. Superoxide-dependence of the short chain sugars-induced mutagenesis. Benov, L., Beema, A.F. Free Radic. Biol. Med. (2003) [Pubmed]
  5. Influence of hydration on dihydroxyacetone-induced pigmentation of stratum corneum. Nguyen, B.C., Kochevar, I.E. J. Invest. Dermatol. (2003) [Pubmed]
  6. The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. Komori, M., Rasmussen, S.W., Kiel, J.A., Baerends, R.J., Cregg, J.M., van der Klei, I.J., Veenhuis, M. EMBO J. (1997) [Pubmed]
  7. From ATP as substrate to ADP as coenzyme: functional evolution of the nucleotide binding subunit of dihydroxyacetone kinases. Bächler, C., Flükiger-Brühwiler, K., Schneider, P., Bähler, P., Erni, B. J. Biol. Chem. (2005) [Pubmed]
  8. Cloning, heterologous expression, and characterization of three aquaglyceroporins from Trypanosoma brucei. Uzcategui, N.L., Szallies, A., Pavlovic-Djuranovic, S., Palmada, M., Figarella, K., Boehmer, C., Lang, F., Beitz, E., Duszenko, M. J. Biol. Chem. (2004) [Pubmed]
  9. Dihydroxyacetone kinases in Saccharomyces cerevisiae are involved in detoxification of dihydroxyacetone. Molin, M., Norbeck, J., Blomberg, A. J. Biol. Chem. (2003) [Pubmed]
  10. Dihydroxyacetone-induced oscillations in cytoplasmic free Ca2+ and the ATP/ADP ratio in pancreatic beta-cells at substimulatory glucose. Juntti-Berggren, L., Webb, D.L., Arkhammar, P.O., Schultz, V., Schweda, E.K., Tornheim, K., Berggren, P.O. J. Biol. Chem. (2003) [Pubmed]
  11. Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. Daniel, R., Stuertz, K., Gottschalk, G. J. Bacteriol. (1995) [Pubmed]
  12. Dihydroxyacetone synthase from a methanol-utilizing carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803. Ro, Y.T., Eom, C.Y., Song, T., Cho, J.W., Kim, Y.M. J. Bacteriol. (1997) [Pubmed]
  13. Fatty liver caused by chronic alcohol ingestion is prevented by dietary supplementation with pyruvate or glycerol. Rao, G.A., Riley, D.E., Larkin, E.C. Lipids (1984) [Pubmed]
  14. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Dutta, D., Gachhui, R. Int. J. Syst. Evol. Microbiol. (2006) [Pubmed]
  15. Hormonal control of [14C]glucose synthesis from [U-14C]dihydroxyacetone and glycerol in isolated rat hepatocytes. Pilkis, S.J., Riou, J.P., Claus, T.H. J. Biol. Chem. (1976) [Pubmed]
  16. Purification and characterization of 2,5-diketo-D-gluconate reductase from Corynebacterium sp. Miller, J.V., Estell, D.A., Lazarus, R.A. J. Biol. Chem. (1987) [Pubmed]
  17. Transcriptional down-regulation of peroxisome numbers affects selective peroxisome degradation in Hansenula polymorpha. Leao-Helder, A.N., Krikken, A.M., van der Klei, I.J., Kiel, J.A., Veenhuis, M. J. Biol. Chem. (2003) [Pubmed]
  18. Multiple requirements for glycogen synthesis by hepatocytes isolated from fasted rats. Chen, K.S., Lardy, H.A. J. Biol. Chem. (1985) [Pubmed]
  19. Exogenous Mg-ATP induces a large inhibition of pyruvate kinase in intact rat hepatocytes. Ichai, C., El-Mir, M.Y., Nogueira, V., Piquet, M.A., Chauvin, C., Fontaine, E., Leverve, X.M. J. Biol. Chem. (2001) [Pubmed]
  20. The membrane proteins of the methanol-induced peroxisome of Candida boidinii. Initial characterization and generation of monoclonal antibodies. Goodman, J.M., Maher, J., Silver, P.A., Pacifico, A., Sanders, D. J. Biol. Chem. (1986) [Pubmed]
  21. Characterisation of the abnormal pancreatic D and A cell function in streptozotocin diabetic dogs: studies with D-glyceraldehyde, dihydroxyacetone, D-mannoheptulose, D-glucose, and L-arginine. Hermansen, K. Diabetologia (1981) [Pubmed]
  22. On the biochemical nature of triose- and hexose-stimulated insulin secretion. Zawalich, W.S., Dye, E.S., Rognstad, R., Matschinsky, F.M. Endocrinology (1978) [Pubmed]
  23. Renal glycerol metabolism and the distribution of glycerol kinase in rabbit nephron. Wirthensohn, G., Vandewalle, A., Guder, W.G. Biochem. J. (1981) [Pubmed]
  24. Catecholamine and vasopressin stimulation of gluconeogenesis from dihydroxyacetone in the presence of atractyloside. Warnette-Hammond, M.E., Lardy, H.A. J. Biol. Chem. (1985) [Pubmed]
  25. Modulation of the phosphorylation state of rat liver pyruvate kinase by allosteric effectors and insulin. Claus, T.H., El-Maghrabi, M.R., Pilkis, S.J. J. Biol. Chem. (1979) [Pubmed]
  26. Formation of 1,3-cyclic glycerophosphate by the action of phospholipase C on phosphatidylglycerol. Shinitzky, M., Friedman, P., Haimovitz, R. J. Biol. Chem. (1993) [Pubmed]
  27. Mechanistic imperatives for aldose-ketose isomerization in water: specific, general base- and metal ion-catalyzed isomerization of glyceraldehyde with proton and hydride transfer. Nagorski, R.W., Richard, J.P. J. Am. Chem. Soc. (2001) [Pubmed]
  28. Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains. Sprenger, G.A., Schörken, U., Sprenger, G., Sahm, H. J. Bacteriol. (1995) [Pubmed]
  29. Hansenula polymorpha Swi1p and Snf2p are essential for methanol utilisation. Ozimek, P., Lahtchev, K., Kiel, J.A., Veenhuis, M., van der Klei, I.J. FEMS Yeast Res. (2004) [Pubmed]
  30. The complete phosphotranferase system in Escherichia coli. Tchieu, J.H., Norris, V., Edwards, J.S., Saier, M.H. J. Mol. Microbiol. Biotechnol. (2001) [Pubmed]
  31. Overexpression of short heterodimer partner recovers impaired glucose-stimulated insulin secretion of pancreatic beta-cells overexpressing UCP2. Suh, Y.H., Kim, S.Y., Lee, H.Y., Jang, B.C., Bae, J.H., Sohn, J.N., Bae, J.H., Suh, S.I., Park, J.W., Lee, K.U., Song, D.K. J. Endocrinol. (2004) [Pubmed]
  32. Stimulation of glycogen synthesis in hepatocytes by added amino acids is related to the total intracellular content of amino acids. Plomp, P.J., Boon, L., Caro, L.H., van Woekom, G.M., Meijer, A.J. Eur. J. Biochem. (1990) [Pubmed]
  33. Chemical trapping of complexes of dihydroxyacetone phosphate with muscle fructose-1,6-bisphosphate aldolase. Kuo, D.J., Rose, I.A. Biochemistry (1985) [Pubmed]
  34. Clinical review of patients treated for atypical claudication: a 28-year experience. Turnipseed, W.D. J. Vasc. Surg. (2004) [Pubmed]
  35. Growth of mycobacteria on carbon monoxide and methanol. Park, S.W., Hwang, E.H., Park, H., Kim, J.A., Heo, J., Lee, K.H., Song, T., Kim, E., Ro, Y.T., Kim, S.W., Kim, Y.M. J. Bacteriol. (2003) [Pubmed]
  36. The effect of pyruvate or dihydroxyacetone on parenterally induced liver lipid accumulation in the rat. Olson, B.H., Schneeman, B.O., Freedland, R.A. Proc. Soc. Exp. Biol. Med. (1991) [Pubmed]
  37. Enhanced hepatic gluconeogenic capacity for selected precursors after endurance training. Sumida, K.D., Donovan, C.M. J. Appl. Physiol. (1995) [Pubmed]
 
WikiGenes - Universities