The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

glyceraldehyde     2,3-dihydroxypropanal

Synonyms: Glycerose, Aldotriose, aldose, Glyceraldehyd, Glycerinformal, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of glyceraldehyde

 

Psychiatry related information on glyceraldehyde

 

High impact information on glyceraldehyde

 

Chemical compound and disease context of glyceraldehyde

 

Biological context of glyceraldehyde

 

Anatomical context of glyceraldehyde

 

Associations of glyceraldehyde with other chemical compounds

 

Gene context of glyceraldehyde

 

Analytical, diagnostic and therapeutic context of glyceraldehyde

References

  1. Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein. Dunne, M.J., Bullett, M.J., Li, G.D., Wollheim, C.B., Petersen, O.H. EMBO J. (1989) [Pubmed]
  2. Urine glyceraldehyde excretion is elevated in the renal Fanconi syndrome. Jonas, A.J., Lin, S.N., Conley, S.B., Schneider, J.A., Williams, J.C., Caprioli, R.C. Kidney Int. (1989) [Pubmed]
  3. Nonenzymatic formation of "energy-rich" lactoyl and glyceroyl thioesters from glyceraldehyde and a thiol. Weber, A.L. J. Mol. Evol. (1984) [Pubmed]
  4. Regulation of human melanoma growth and metastasis by AGE-AGE receptor interactions. Abe, R., Shimizu, T., Sugawara, H., Watanabe, H., Nakamura, H., Choei, H., Sasaki, N., Yamagishi, S., Takeuchi, M., Shimizu, H. J. Invest. Dermatol. (2004) [Pubmed]
  5. Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues. Tessier, F.J., Monnier, V.M., Sayre, L.M., Kornfield, J.A. Biochem. J. (2003) [Pubmed]
  6. Glyceraldehyde-derived advanced glycation end products in Alzheimer's disease. Choei, H., Sasaki, N., Takeuchi, M., Yoshida, T., Ukai, W., Yamagishi, S., Kikuchi, S., Saito, T. Acta Neuropathol. (2004) [Pubmed]
  7. Serum or cerebrospinal fluid levels of glyceraldehyde-derived advanced glycation end products (AGEs) may be a promising biomarker for early detection of Alzheimer's disease. Yamagishi, S., Nakamura, K., Inoue, H., Kikuchi, S., Takeuchi, M. Med. Hypotheses (2005) [Pubmed]
  8. Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. Meda, P., Bosco, D., Chanson, M., Giordano, E., Vallar, L., Wollheim, C., Orci, L. J. Clin. Invest. (1990) [Pubmed]
  9. Effects of glyceraldehyde on the structural and functional properties of sickle erythrocytes. Nigen, A.M., Manning, J.M. J. Clin. Invest. (1978) [Pubmed]
  10. Activated and unactivated forms of human erythrocyte aldose reductase. Srivastava, S.K., Hair, G.A., Das, B. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  11. Fructose 2,6-bisphosphate and the control of glycolysis by glucocorticoids and by other agents in rat hepatoma cells. Loiseau, A.M., Rousseau, G.G., Hue, L. Cancer Res. (1985) [Pubmed]
  12. Molecular Properties of Oep21, an ATP-regulated Anion-selective Solute Channel from the Outer Chloroplast Membrane. Hemmler, R., Becker, T., Schleiff, E., Bölter, B., Stahl, T., Soll, J., Götze, T.A., Braams, S., Wagner, R. J. Biol. Chem. (2006) [Pubmed]
  13. The stimulus-secretion coupling of glucose-induced insulin release. Thiol: disulfide balance in pancreatic islets. Anjaneyulu, K., Anjaneyulu, R., Sener, A., Malaisse, W.J. Biochimie (1982) [Pubmed]
  14. Reactivity of the amino groups of carbonmonoxyhemoglobin S with glyceraldehyde. Acharya, A.S., Manning, J.M. J. Biol. Chem. (1980) [Pubmed]
  15. Nutrient stimulation results in a rapid Ca2+-dependent threonine phosphorylation of myosin heavy chain in rat pancreatic islets and RINm5F cells. Wilson, J.R., Ludowyke, R.I., Biden, T.J. J. Biol. Chem. (1998) [Pubmed]
  16. D-Glyceraldehyde causes production of intracellular peroxide in pancreatic islets, oxidative stress, and defective beta cell function via non-mitochondrial pathways. Takahashi, H., Tran, P.O., LeRoy, E., Harmon, J.S., Tanaka, Y., Robertson, R.P. J. Biol. Chem. (2004) [Pubmed]
  17. The dynamic insulin secretory response of isolated pancreatic islets of the diabetic mouse. Evidence for a gene dosage effect on insulin secretion. Molina, J.M., Premdas, F.H., Klenck, R.E., Eddlestone, G., Oldham, S.B., Lipson, L.G. Diabetes (1984) [Pubmed]
  18. The reversibility of the ketoamine linkages of aldoses with proteins. Acharya, A.S., Sussman, L.G. J. Biol. Chem. (1984) [Pubmed]
  19. Insulin release in RINm5F cells and glyceraldehyde activation of protein kinase C. Thomas, T.P., Ellis, T.R., Pek, S.B. Diabetes (1989) [Pubmed]
  20. Gestational hyperglycaemia and insulin release by the fetal rat pancreas in vitro: effect of amino acids and glyceraldehyde. Bihoreau, M.T., Ktorza, A., Picon, L. Diabetologia (1986) [Pubmed]
  21. Characterisation of the abnormal pancreatic D and A cell function in streptozotocin diabetic dogs: studies with D-glyceraldehyde, dihydroxyacetone, D-mannoheptulose, D-glucose, and L-arginine. Hermansen, K. Diabetologia (1981) [Pubmed]
  22. Insulin release in aging: dynamic response of isolated islets of Langerhans of the rat to D-glucose and D-glyceraldehyde. Molina, J.M., Premdas, F.H., Lipson, L.G. Endocrinology (1985) [Pubmed]
  23. Metabolic effects of D-glyceraldehyde in isolated hepatocytes. Maswoswe, S.M., Daneshmand, F., Davies, D.R. Biochem. J. (1986) [Pubmed]
  24. Inhibition of erythrocyte sickling in vitro by DL-glyceraldehyde. Nigen, A.M., Manning, J.M. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  25. Aldose reductase from human psoas muscle. Affinity labeling of an active site lysine by pyridoxal 5'-phosphate and pyridoxal 5'-diphospho-5'-adenosine. Morjana, N.A., Lyons, C., Flynn, T.G. J. Biol. Chem. (1989) [Pubmed]
  26. Immunological evidence for methylglyoxal-derived modifications in vivo. Determination of antigenic epitopes. Shamsi, F.A., Partal, A., Sady, C., Glomb, M.A., Nagaraj, R.H. J. Biol. Chem. (1998) [Pubmed]
  27. Human liver aldehyde dehydrogenase. Esterase activity. Sidhu, R.S., Blair, A.H. J. Biol. Chem. (1975) [Pubmed]
  28. Comparison of alpha- and beta-cell secretory responses in islets isolated with collagenase and in the isolated perfused pancreas of rats. Norfleet, W.T., Pagliara, A.S., Haymond, M.W., Matschinsky, F. Diabetes (1975) [Pubmed]
  29. Selectivity determinants of the aldose and aldehyde reductase inhibitor-binding sites. El-Kabbani, O., Podjarny, A. Cell. Mol. Life Sci. (2007) [Pubmed]
  30. Aldehyde and aldose reductases from human placenta. Heterogeneous expression of multiple enzyme forms. Vander Jagt, D.L., Hunsaker, L.A., Robinson, B., Stangebye, L.A., Deck, L.M. J. Biol. Chem. (1990) [Pubmed]
  31. Glyceraldehyde-derived advanced glycation end-products preferentially induce VEGF expression and reduce GDNF expression in human astrocytes. Miyajima, H., Osanai, M., Chiba, H., Nishikiori, N., Kojima, T., Ohtsuka, K., Sawada, N. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  32. Purification and properties of human liver aldehyde reductases. Petrash, J.M., Srivastava, S.K. Biochim. Biophys. Acta (1982) [Pubmed]
  33. Aldehyde reductase isozymes in the mouse: evidence for two new loci and localization of Ahr-3 on chromosome 7. Mather, P.B., Holmes, R.S. Biochem. Genet. (1985) [Pubmed]
  34. Bombesin and nutrients independently and additively regulate hormone release from GIP/Ins cells. Li, L., Wice, B.M. Am. J. Physiol. Endocrinol. Metab. (2005) [Pubmed]
  35. Localization of erythropoietin mRNA in the rat kidney by polymerase chain reaction. da Silva, J.L., Schwartzman, M.L., Goodman, A., Levere, R.D., Abraham, N.G. J. Cell. Biochem. (1994) [Pubmed]
  36. The effect of nonenzymatic glycation on the stability and conformation of two deoxyoligonucleotide duplexes: A spectroscopic analysis by circular dichroism. Dutta, U., Cohenford, M.A., Dain, J.A. Anal. Biochem. (2007) [Pubmed]
  37. Inhibitory effect of glucose and phosphate on the second cleavage division of hamster embryos: is it linked to metabolism? Barnett, D.K., Bavister, B.D. Hum. Reprod. (1996) [Pubmed]
  38. Aldose reductase does catalyse the reduction of glyceraldehyde through a stoichiometric oxidation of NADPH. Del Corso, A., Costantino, L., Rastelli, G., Buono, F., Mura, U. Exp. Eye Res. (2000) [Pubmed]
  39. Inverse relationship between glucose metabolism and glucose-induced insulin secretion in rat insulinoma cells. Trautmann, M.E., Blondel, B., Gjinovci, A., Wollheim, C.B. Horm. Res. (1990) [Pubmed]
 
WikiGenes - Universities