The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

DIHYDROXYACETONE PHOSPHATE     (3-hydroxy-2-oxo- propoxy)phosphonic acid

Synonyms: DHAP, CHEMBL1161998, CHEBI:16108, CHEBI:17197, HMDB01473, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.



High impact information on DIHYDROXYACETONE PHOSPHATE


Chemical compound and disease context of DIHYDROXYACETONE PHOSPHATE






Associations of DIHYDROXYACETONE PHOSPHATE with other chemical compounds




Analytical, diagnostic and therapeutic context of DIHYDROXYACETONE PHOSPHATE


  1. Hyperinsulinism, diabetes mellitus, and respiratory distress of the newborn: A common link? Stubbs, W.A., Stubbs, S.M. Lancet (1978) [Pubmed]
  2. The mechanism of ether bond formation in O-alkyl lipid synthesis in Ehrlich ascites tumor. Unusual cleavage of the fatty acid moiety of acyl dihydroxyacetone phosphate. Friedberg, S.J., Weintraub, S.T., Singer, M.R., Greene, R.C. J. Biol. Chem. (1983) [Pubmed]
  3. Effects of halo analogs of glycerol 3-phosphate and dihydroxyacetone phosphate upon Escherichia coli. Mildener, B., Fondy, T.P., Engel, R., Tropp, B.E. Antimicrob. Agents Chemother. (1981) [Pubmed]
  4. Secondary H/T and D/T isotope effects in enzymatic enolization reactions. Coupled motion and tunneling in the triosephosphate isomerase reaction. Alston, W.C., Kanska, M., Murray, C.J. Biochemistry (1996) [Pubmed]
  5. Simple enzymatic in situ generation of dihydroxyacetone phosphate and its use in a cascade reaction for the production of carbohydrates: increased efficiency by phosphate cycling. van Herk, T., Hartog, A.F., Schoemaker, H.E., Wever, R. J. Org. Chem. (2006) [Pubmed]
  6. Deficiency of enzymes catalyzing the biosynthesis of glycerol-ether lipids in Zellweger syndrome. A new category of metabolic disease involving the absence of peroxisomes. Datta, N.S., Wilson, G.N., Hajra, A.K. N. Engl. J. Med. (1984) [Pubmed]
  7. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Balmer, Y., Vensel, W.H., Tanaka, C.K., Hurkman, W.J., Gelhaye, E., Rouhier, N., Jacquot, J.P., Manieri, W., Schürmann, P., Droux, M., Buchanan, B.B. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  8. Optimal alignment for enzymatic proton transfer: structure of the Michaelis complex of triosephosphate isomerase at 1.2-A resolution. Jogl, G., Rozovsky, S., McDermott, A.E., Tong, L. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  9. Reversal of metabolic block in glycolysis by enzyme replacement in triosephosphate isomerase-deficient cells. Ationu, A., Humphries, A., Lalloz, M.R., Arya, R., Wild, B., Warrilow, J., Morgan, J., Bellingham, A.J., Layton, D.M. Blood (1999) [Pubmed]
  10. Improvement in the relationship between flow to ischemic myocardium and the extent of necrosis with glycolytic intermediates that decrease blood oxygen affinity in dogs. Pantely, G.A., Oyama, A.A., Metcalfe, J., Lawson, M.S., Welch, J.E. Circ. Res. (1981) [Pubmed]
  11. Modification of aspartate before its condensation with dihydroxyacetone phosphate during quinolinic acid formation in Escherichia coli. Steiner, B.M., Heard, J.T., Tritz, G.J. J. Bacteriol. (1980) [Pubmed]
  12. Multienzyme system for dihydroxyacetone phosphate-dependent aldolase catalyzed C-C bond formation from dihydroxyacetone. Sánchez-Moreno, I., García-García, J.F., Bastida, A., García-Junceda, E. Chem. Commun. (Camb.) (2004) [Pubmed]
  13. Methylglyoxal production in bacteria: suicide or survival? Ferguson, G.P., Tötemeyer, S., MacLean, M.J., Booth, I.R. Arch. Microbiol. (1998) [Pubmed]
  14. Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA and nadB. Flachmann, R., Kunz, N., Seifert, J., Gütlich, M., Wientjes, F.J., Läufer, A., Gassen, H.G. Eur. J. Biochem. (1988) [Pubmed]
  15. Cloning, overexpression, and purification of Escherichia coli quinolinate synthetase. Ceciliani, F., Caramori, T., Ronchi, S., Tedeschi, G., Mortarino, M., Galizzi, A. Protein Expr. Purif. (2000) [Pubmed]
  16. Properties of dihydroxyacetone phosphate acyltransferase in the harderian gland. Rock, C.O., Fitzgerald, V., Snyder, F. J. Biol. Chem. (1977) [Pubmed]
  17. Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. Inoue, Y., Tsujimoto, Y., Kimura, A. J. Biol. Chem. (1998) [Pubmed]
  18. The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. Zheng, Z., Zou, J. J. Biol. Chem. (2001) [Pubmed]
  19. Affinity labeling of a previously undetected essential lysyl residue in class I fructose bisphosphate aldolase. Hartman, F.C., Brown, J.P. J. Biol. Chem. (1976) [Pubmed]
  20. Hydrogen peroxide mediates the oxidative inactivation of enzymes following the switch from anaerobic to aerobic metabolism in Klebsiella pneumoniae. Chevalier, M., Lin, E.C., Levine, R.L. J. Biol. Chem. (1990) [Pubmed]
  21. Partial phenotypic suppression of a peroxisome-deficient animal cell mutant treated with aminoglycoside G418. Allen, L.A., Raetz, C.R. J. Biol. Chem. (1992) [Pubmed]
  22. Incorporation of D-[3-3H, U-14C] glucose into glycerolipid via acyl dihydroxyacetone phosphate untransformed and viral-transformed BHK-21-c13 fibroblasts. Pollock, R.J., Hajra, A.K., Agranoff, B.W. J. Biol. Chem. (1976) [Pubmed]
  23. Hydrogen exchange in the formation of dihydroxyacetone phosphate from acyl dihydroxyacetone phosphate in O-alkyl lipid synthesis in Ehrlich ascites tumor cell microsomes. Friedberg, S.J., Gomillion, M. J. Biol. Chem. (1981) [Pubmed]
  24. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. Wise, L.S., Green, H. J. Biol. Chem. (1979) [Pubmed]
  25. Structure of tagatose-1,6-bisphosphate aldolase. Insight into chiral discrimination, mechanism, and specificity of class II aldolases. Hall, D.R., Bond, C.S., Leonard, G.A., Watt, C.I., Berry, A., Hunter, W.N. J. Biol. Chem. (2002) [Pubmed]
  26. Biosynthesis in Escherichia coli of sn-glycerol 3-phosphate, a precursor of phospholipid. Kinetic characterization of wild type and feedback-resistant forms of the biosynthetic sn-glycerol-3-phosphate dehydrogenase. Edgar, J.R., Bell, R.M. J. Biol. Chem. (1978) [Pubmed]
  27. Carboxyl terminus region modulates catalytic activity of recombinant maize aldolase. Berthiaume, L., Loisel, T.P., Sygusch, J. J. Biol. Chem. (1991) [Pubmed]
  28. Novel benzene ring biosynthesis from c3 and c4 primary metabolites by two enzymes. Suzuki, H., Ohnishi, Y., Furusho, Y., Sakuda, S., Horinouchi, S. J. Biol. Chem. (2006) [Pubmed]
  29. Investigations concerning the mode of action of 3,4-dihydroxybutyl-1-phosphonate on Escherichia coli. Cheng, P.J., Nunn, W.D., Tyhach, R.J., Goldstein, S.L., Engel, R., Tropp, B.E. J. Biol. Chem. (1975) [Pubmed]
  30. Genetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesis. Shi, Y., Vaden, D.L., Ju, S., Ding, D., Geiger, J.H., Greenberg, M.L. J. Biol. Chem. (2005) [Pubmed]
  31. Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external NADH dehydrogenase in Saccharomyces cerevisiae. Påhlman, I.L., Larsson, C., Averét, N., Bunoust, O., Boubekeur, S., Gustafsson, L., Rigoulet, M. J. Biol. Chem. (2002) [Pubmed]
  32. Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae. Athenstaedt, K., Weys, S., Paltauf, F., Daum, G. J. Bacteriol. (1999) [Pubmed]
  33. Evidence for an intermediate in quinolinate biosynthesis in Escherichia coli. Wicks, F.D., Sakakibara, S., Gholson, R.K. J. Bacteriol. (1978) [Pubmed]
  34. The structural basis for pseudoreversion of the H95N lesion by the secondary S96P mutation in triosephosphate isomerase. Komives, E.A., Lougheed, J.C., Zhang, Z., Sugio, S., Narayana, N., Xuong, N.H., Petsko, G.A., Ringe, D. Biochemistry (1996) [Pubmed]
  35. Hydroxynaphthaldehyde phosphate derivatives as potent covalent Schiff base inhibitors of fructose-1,6-bisphosphate aldolase. Dax, C., Coinçon, M., Sygusch, J., Blonski, C. Biochemistry (2005) [Pubmed]
  36. Purification of dihydroxyacetone phosphate acyltransferase from guinea pig liver peroxisomes. Webber, K.O., Hajra, A.K. Arch. Biochem. Biophys. (1993) [Pubmed]
  37. Chemiluminescent assay of alkaline phosphatase using dihydroxyacetone phosphate as substrate detected with lucigenin. Kokado, A., Arakawa, H., Maeda, M. Luminescence : the journal of biological and chemical luminescence. (2002) [Pubmed]
  38. Microencapsulation of Aerococcus viridans with catalase and its application for the synthesis of dihydroxyacetone phosphate. Streitenberger, S.A., Villaverde, M.J., Sánchez-Ferrer, A., García-Carmona, F. Appl. Microbiol. Biotechnol. (2002) [Pubmed]
WikiGenes - Universities