The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Control of 3-hydroxy-3-methylglutaryl coenzyme A reductase by endogenously synthesized sterols in vitro and in vivo.

Isolated rat hepatocytes converted mevalonolactone into sterol intermediates and fatty acids 6- to 8-fold faster than mevalonate salt at concentrations less than 6 X 10(-4) M. Incubation of hepatocytes for 3 h normally results in induction of 3-hydroxy-3-methylglutaryl-CoA reductase. This increase in enzyme activity was inhibited by mevalonolactone and by mevalonate salt; at each concentration between 6 X 10(-4) M and 6 X 10(-8) M the lactone was a more effective inhibitor than the salt. The increase in enzyme activity was completely prevented by 6 X 10(-4) M lactone, and at this concentration the cells synthesized from the lactone an amount of sterol per hour which approximated that leavingthe cells in the same period. Administration of mevalonolactone to intact rats resulted in a dose-dependent inhibition of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity. At the highest dose (400 mg of (RS)-mevalonolactone/200 g of rat) enzyme activities declined 85% within 45 min and were still suppressed below normals after 28 h. Mevalonolactone treatment resulted in increases in liver cholesterol content and in the cholesterol ester concentration of liver microsomes. The results demonstrate that the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase can be controlled by the rate of endogenous sterol synthesis both in vitro and in vivo.[1]

References

  1. Control of 3-hydroxy-3-methylglutaryl coenzyme A reductase by endogenously synthesized sterols in vitro and in vivo. Edwards, P.A., Popják, G., Fogelman, A.M., Edmond, J. J. Biol. Chem. (1977) [Pubmed]
 
WikiGenes - Universities