The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The aggregation domain of aggregation substance, not the RGD motifs, is critical for efficient internalization by HT-29 enterocytes.

Aggregation substance (AS), a surface protein encoded on the pheromone-inducible plasmids of Enterococcus faecalis, has been shown to increase adherence and internalization into a number of different cell types, presumably through integrin binding mediated by the N-terminal RGD motif of AS. Here, defined mutations constructed in Asc10, the AS encoded by the plasmid pCF10, are analyzed for their ability to promote increased internalization levels into HT-29 enterocytes. The results clearly show that the previously identified Asc10 functional domain, not the RGD motifs, is critical for Asc10-directed internalization of E. faecalis into HT-29 enterocytes. Also, expression of Asc10 in the nonaggregating E. faecalis strain INY3000 is unable to mediate HT-29 internalization. However, Asc10-expressing E. faecalis cells are not internalized as bacterial aggregates, suggesting bacterial aggregation is not a prerequisite for HT-29 internalization. These data show that Asc10 directs internalization of E. faecalis into HT-29 enterocytes through a non-RGD-dependent mechanism.[1]


WikiGenes - Universities