The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Enterocytes


High impact information on Enterocytes

  • Here we report significant and replicable association (P = 2.1 x 10(-6)) to a common variant located in intron 28 of the gene myosin IXB (MYO9B), which encodes an unconventional myosin molecule that has a role in actin remodeling of epithelial enterocytes [5].
  • It has been suggested that HFE modulates uptake of transferrin-bound iron by undifferentiated intestinal crypt cells, thereby programming the absorptive capacity of enterocytes derived from these cells; however, this model is unproven and controversial [6].
  • We suggest that the hephaestin protein is a multicopper ferroxidase necessary for iron egress from intestinal enterocytes into the circulation and that it is an important link between copper and iron metabolism in mammals [7].
  • Ornithine carbamoyltransferase is an X-linked mitochondrial enzyme expressed in hepatocytes and enterocytes [8].
  • Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation [9].

Chemical compound and disease context of Enterocytes

  • CONCLUSIONS: The findings indicate that alpha-D-glucosidase inhibitors act specifically on the entry of free glucose into the enterocyte, an additional means by which they can reduce postprandial hyperglycemia [10].
  • BACKGROUND & AIMS: Clostridium difficile toxin A causes secretion and intestinal inflammation in rodents by binding to a specific trisaccharide Gal alpha 1-3Gal beta 1-4 GlcNAc on enterocyte receptors [11].
  • The spontaneous differentiation of CaCo-2 human colonic adenocarcinoma cells to enterocytes in culture is associated with a decrease in polylactosaminoglycans, particularly those attached to the lysosomal membrane glycoprotein h-lamp-1 (Youakim et al., Cancer Res., 49:6889-6895, 1989) [12].
  • RESULTS: Hypoxia did not affect villus length but enhanced (+192.6%) luminal iron uptake by increasing the rate of uptake by all enterocytes, particularly those on the upper villus [13].
  • These enterocytes have been used to study the values of intracellular free calcium and the rises in adenosine 3'5'-cyclic monophosphate (cAMP) induced by secretagogues in normal and cystic fibrosis cells [14].

Biological context of Enterocytes


Anatomical context of Enterocytes


Associations of Enterocytes with chemical compounds

  • This transporter facilitates the oral absorption of beta-lactam antibiotics and angiotensin-converting enzyme inhibitors from the intestine into enterocytes lining the luminal wall [24].
  • When lipoxins and LXA4 stable analogs were evaluated for enterocyte functional as well as immune responses, lipoxins sharply inhibited TNF-alpha-induced IL-8 release but did not alter either barrier function or agonist-stimulated chloride secretion [25].
  • In addition, aspirin-treated enterocytes generated 15R-HETE, a precursor of 15-epi-LXA4 biosynthesis, whose potent bioactions were mimicked by the stable analog 15R/S-methyl-LXA4 [25].
  • The regulation of intestinal metabolism of t-butylhydroperoxide by glucose was examined in isolated enterocytes from proximal rat intestine [26].
  • In F/A-2(+/+) transgenic mice, which overexpress arginase in their enterocytes, circulating and tissue arginine concentrations are reduced to 30-35% of controls [27].

Gene context of Enterocytes

  • In addition, enterocyte concentrations of CYP3A4 measured before grapefruit juice consumption correlated with the increase in Cmax when felodipine was taken with either the 1st or the 16th glass of grapefruit juice relative to water (r = 0. 67, P = 0.043, and r = 0.71, P = 0.022, respectively) [28].
  • Furthermore, adenosine triphosphate (ATP)-binding cassette (ABC) transporters ABCG5 and ABCG8 represent apical sterol export pumps that promote active efflux of cholesterol and plant sterols from enterocytes back into the intestinal lumen for excretion [29].
  • Recent research suggests that the newly identified Niemann-Pick C1-like 1 protein (NPC1L1) is expressed at the apical surface of enterocytes and plays a critical role in the absorption of intestinal cholesterol [29].
  • Lymphotoxin beta (LTalpha1beta2) expressed on the membrane of immune cells triggers CCL20 expression in enterocytes [30].
  • These results also suggest that LR-associated Akt2 may be involved in enterocyte differentiation [31].

Analytical, diagnostic and therapeutic context of Enterocytes


  1. Cell-specific expression of alpha 1-antitrypsin in human intestinal epithelium. Molmenti, E.P., Perlmutter, D.H., Rubin, D.C. J. Clin. Invest. (1993) [Pubmed]
  2. Peptide vaccination of mice immune to LCMV or vaccinia virus causes serious CD8 T cell-mediated, TNF-dependent immunopathology. Liu, F., Feuer, R., Hassett, D.E., Whitton, J.L. J. Clin. Invest. (2006) [Pubmed]
  3. In vivo induction of gliadin-mediated enterocyte damage in rats by the mannosidase inhibitor, swainsonine: a possible animal model for celiac disease. Köttgen, E., Beiswenger, M., James, L.F., Bauer, C. Gastroenterology (1988) [Pubmed]
  4. X-ray microanalysis of cell elements in normal and cystic fibrosis jejunum: evidence for chloride secretion in villi. O'Loughlin, E.V., Hunt, D.M., Bostrom, T.E., Hunter, D., Gaskin, K.J., Gyory, A., Cockayne, D.J. Gastroenterology (1996) [Pubmed]
  5. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Monsuur, A.J., de Bakker, P.I., Alizadeh, B.Z., Zhernakova, A., Bevova, M.R., Strengman, E., Franke, L., van't Slot, R., van Belzen, M.J., Lavrijsen, I.C., Diosdado, B., Daly, M.J., Mulder, C.J., Mearin, M.L., Meijer, J.W., Meijer, G.A., van Oort, E., Wapenaar, M.C., Koeleman, B.P., Wijmenga, C. Nat. Genet. (2005) [Pubmed]
  6. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nicolas, G., Viatte, L., Lou, D.Q., Bennoun, M., Beaumont, C., Kahn, A., Andrews, N.C., Vaulont, S. Nat. Genet. (2003) [Pubmed]
  7. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Vulpe, C.D., Kuo, Y.M., Murphy, T.L., Cowley, L., Askwith, C., Libina, N., Gitschier, J., Anderson, G.J. Nat. Genet. (1999) [Pubmed]
  8. Allopurinol-induced orotidinuria. A test for mutations at the ornithine carbamoyltransferase locus in women. Hauser, E.R., Finkelstein, J.E., Valle, D., Brusilow, S.W. N. Engl. J. Med. (1990) [Pubmed]
  9. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S.J., Moynihan, J., Paw, B.H., Drejer, A., Barut, B., Zapata, A., Law, T.C., Brugnara, C., Lux, S.E., Pinkus, G.S., Pinkus, J.L., Kingsley, P.D., Palis, J., Fleming, M.D., Andrews, N.C., Zon, L.I. Nature (2000) [Pubmed]
  10. Inhibition of glucose absorption in the rat jejunum: a novel action of alpha-D-glucosidase inhibitors. Hirsh, A.J., Yao, S.Y., Young, J.D., Cheeseman, C.I. Gastroenterology (1997) [Pubmed]
  11. A receptor decoy inhibits the enterotoxic effects of Clostridium difficile toxin A in rat ileum. Castagliuolo, I., LaMont, J.T., Qiu, B., Nikulasson, S.T., Pothoulakis, C. Gastroenterology (1996) [Pubmed]
  12. Glycosyltransferase changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. Brockhausen, I., Romero, P.A., Herscovics, A. Cancer Res. (1991) [Pubmed]
  13. Increased duodenal iron uptake and transfer in a rat model of chronic hypoxia is accompanied by reduced hepcidin expression. Leung, P.S., Srai, S.K., Mascarenhas, M., Churchill, L.J., Debnam, E.S. Gut (2005) [Pubmed]
  14. Measurement of intracellular mediators in enterocytes isolated from jejunal biopsy specimens of control and cystic fibrosis patients. Hitchin, B.W., Dobson, P.R., Brown, B.L., Hardcastle, J., Hardcastle, P.T., Taylor, C.J. Gut (1991) [Pubmed]
  15. HSP70 protects against TNF-induced lethal inflammatory shock. Van Molle, W., Wielockx, B., Mahieu, T., Takada, M., Taniguchi, T., Sekikawa, K., Libert, C. Immunity (2002) [Pubmed]
  16. Na-K-2Cl cotransporter gene expression and function during enterocyte differentiation. Modulation of Cl- secretory capacity by butyrate. Matthews, J.B., Hassan, I., Meng, S., Archer, S.Y., Hrnjez, B.J., Hodin, R.A. J. Clin. Invest. (1998) [Pubmed]
  17. Glucose transport and microvillus membrane physical properties along the crypt-villus axis of the rabbit. Meddings, J.B., DeSouza, D., Goel, M., Thiesen, S. J. Clin. Invest. (1990) [Pubmed]
  18. Biogenesis of intestinal lactase-phlorizin hydrolase in adults with lactose intolerance. Evidence for reduced biosynthesis and slowed-down maturation in enterocytes. Sterchi, E.E., Mills, P.R., Fransen, J.A., Hauri, H.P., Lentze, M.J., Naim, H.Y., Ginsel, L., Bond, J. J. Clin. Invest. (1990) [Pubmed]
  19. Hydrogen peroxide stimulates rat colonic prostaglandin production and alters electrolyte transport. Karayalcin, S.S., Sturbaum, C.W., Wachsman, J.T., Cha, J.H., Powell, D.W. J. Clin. Invest. (1990) [Pubmed]
  20. An iron-regulated ferric reductase associated with the absorption of dietary iron. McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., Peters, T.J., Raja, K.B., Shirali, S., Hediger, M.A., Farzaneh, F., Simpson, R.J. Science (2001) [Pubmed]
  21. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Yang, Q., Bermingham, N.A., Finegold, M.J., Zoghbi, H.Y. Science (2001) [Pubmed]
  22. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. Frey, A., Giannasca, K.T., Weltzin, R., Giannasca, P.J., Reggio, H., Lencer, W.I., Neutra, M.R. J. Exp. Med. (1996) [Pubmed]
  23. Small intestine hexose transport in experimental diabetes. Increased transporter mRNA and protein expression in enterocytes. Burant, C.F., Flink, S., DePaoli, A.M., Chen, J., Lee, W.S., Hediger, M.A., Buse, J.B., Chang, E.B. J. Clin. Invest. (1994) [Pubmed]
  24. Association of intestinal peptide transport with a protein related to the cadherin superfamily. Dantzig, A.H., Hoskins, J.A., Tabas, L.B., Bright, S., Shepard, R.L., Jenkins, I.L., Duckworth, D.C., Sportsman, J.R., Mackensen, D., Rosteck, P.R. Science (1994) [Pubmed]
  25. Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon gamma and inhibits tumor necrosis factor alpha-induced IL-8 release. Gronert, K., Gewirtz, A., Madara, J.L., Serhan, C.N. J. Exp. Med. (1998) [Pubmed]
  26. Glucose regulation of hydroperoxide metabolism in rat intestinal cells. Stimulation of reduced nicotinamide adenine dinucleotide phosphate supply. Aw, T.Y., Rhoads, C.A. J. Clin. Invest. (1994) [Pubmed]
  27. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. de Jonge, W.J., Kwikkers, K.L., te Velde, A.A., van Deventer, S.J., Nolte, M.A., Mebius, R.E., Ruijter, J.M., Lamers, M.C., Lamers, W.H. J. Clin. Invest. (2002) [Pubmed]
  28. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. Lown, K.S., Bailey, D.G., Fontana, R.J., Janardan, S.K., Adair, C.H., Fortlage, L.A., Brown, M.B., Guo, W., Watkins, P.B. J. Clin. Invest. (1997) [Pubmed]
  29. New insights into the genetic regulation of intestinal cholesterol absorption. Lammert, F., Wang, D.Q. Gastroenterology (2005) [Pubmed]
  30. Novel markers of the human follicle-associated epithelium identified by genomic profiling and microdissection. Anderle, P., Rumbo, M., Sierro, F., Mansourian, R., Michetti, P., Roberts, M.A., Kraehenbuhl, J.P. Gastroenterology (2005) [Pubmed]
  31. Akt2, phosphatidylinositol 3-kinase, and PTEN are in lipid rafts of intestinal cells: role in absorption and differentiation. Li, X., Leu, S., Cheong, A., Zhang, H., Baibakov, B., Shih, C., Birnbaum, M.J., Donowitz, M. Gastroenterology (2004) [Pubmed]
  32. A genetic model for absent chylomicron formation: mice producing apolipoprotein B in the liver, but not in the intestine. Young, S.G., Cham, C.M., Pitas, R.E., Burri, B.J., Connolly, A., Flynn, L., Pappu, A.S., Wong, J.S., Hamilton, R.L., Farese, R.V. J. Clin. Invest. (1995) [Pubmed]
  33. Intestinal glucose transport: evidence for a membrane traffic-based pathway in humans. Santer, R., Hillebrand, G., Steinmann, B., Schaub, J. Gastroenterology (2003) [Pubmed]
  34. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. Waheed, A., Parkkila, S., Saarnio, J., Fleming, R.E., Zhou, X.Y., Tomatsu, S., Britton, R.S., Bacon, B.R., Sly, W.S. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
WikiGenes - Universities