The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Glycerol production by microbial fermentation: a review.

Microbial production of glycerol has been known for 150 years, and glycerol was produced commercially during World War I. Glycerol production by microbial synthesis subsequently declined since it was unable to compete with chemical synthesis from petrochemical feedstocks due to the low glycerol yields and the difficulty with extraction and purification of glycerol from broth. As the cost of propylene has increased and its availability has decreased especially in developing countries and as glycerol has become an attractive feedstock for production of various chemicals, glycerol production by fermentation has become more attractive as an alternative route. Substantial overproduction of glycerol by yeast from monosaccharides can be obtained by: (1) forming a complex between acetaldehyde and bisulfite ions thereby retarding ethanol production and restoring the redox balance through glycerol synthesis; (2) growing yeast cultures at pH values near 7 or above; or (3) using osmotolerant yeasts. In recent years, significant improvements have been made in the glycerol production using osmotolerant yeasts on a commercial scale in China. The most outstanding achievements include: (1) isolation of novel osmotolerant yeast strains producing up to 130 g/L glycerol with yields up to 63% and the productivities up to 32 g/(L day); (2) glycerol yields, productivities and concentrations in broth up to 58%, 30 g/(L day) and 110-120 g/L, respectively, in an optimized aerobic fermentation process have been attained on a commercial scale; and (3) a carrier distillation technique with a glycerol distillation efficiency greater than 90% has been developed. As glycerol metabolism has become better understood in yeasts, opportunities will arise to construct novel glycerol overproducing microorganisms by metabolic engineering.[1]

References

  1. Glycerol production by microbial fermentation: a review. Wang, Z.X., Zhuge, J., Fang, H., Prior, B.A. Biotechnology advances. (2001) [Pubmed]
 
WikiGenes - Universities