The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Target-specific neuropeptide Y-ergic synaptic inhibition and its network consequences within the mammalian thalamus.

Neuropeptides are commonly colocalized with classical neurotransmitters, yet there is little evidence for peptidergic neurotransmission in the mammalian CNS. We performed whole-cell patch-clamp recording from rodent thalamic brain slices and repetitively stimulated corticothalamic fibers to strongly activate NPY-containing GABAergic reticular thalamic (RT) neurons. This resulted in long-lasting (approximately 10 sec) feedforward slow IPSPs (sIPSPs) in RT cells, which were mimicked and blocked by NPY1 (Y1) receptor agonists and antagonists, respectively, and were present in wild-type mice but absent in NPY-/- mice. NPYergic sIPSPs were mediated via G-proteins and G-protein-activated, inwardly rectifying potassium channels, as evidenced by sensitivity to GDP-beta-S and 0.1 mm Ba2+. In rat RT neurons, NPYergic sIPSPs were also present but were surprisingly absent in the major synaptic targets of RT, thalamic relay neurons, where instead robust GABA(B) IPSPs occurred. In vitro oscillatory network responses in rat thalamus were suppressed and augmented by Y1 agonists and antagonists, respectively. These findings provide evidence for segregation of postsynaptic actions between two targets of RT cells and support a role for endogenously released NPY within RT in the regulation of oscillatory thalamic responses relevant to sleep and epilepsy.[1]

References

  1. Target-specific neuropeptide Y-ergic synaptic inhibition and its network consequences within the mammalian thalamus. Sun, Q.Q., Baraban, S.C., Prince, D.A., Huguenard, J.R. J. Neurosci. (2003) [Pubmed]
 
WikiGenes - Universities