Altered levels and regulation of stathmin in paclitaxel-resistant ovarian cancer cells.
Two paclitaxel(Ptx)-resistant ovarian cancer cell lines, 1A9/Ptx-10 and 1A9/Ptx-22, isolated from the 1A9 cell line (a clone of the A2780 line) by continuous exposure to Ptx and verapamil, have point mutations in their major beta-tubulin gene and in one or both alleles of their TP53 gene. These cells were examined for alterations in cell cycle regulators and the tubulin- binding protein stathmin. Unlike parental cells, neither 1A9/Ptx-10 nor 1A9/Ptx-22 expressed detectable levels of p21(WAF1/Cip1), a putative transcriptional regulator of stathmin, but did overexpress stathmin and Bcl2. No differences were noted in the expression levels of proliferative cell nuclear antigen or tyrosine-phosphorylated p34Cdc2. Ptx treatment altered little the expression of stathmin in the parental cell line, although it increased p21(WAF1/Cip1) levels several-fold. Infection of Ptx-resistant lines with a wild-type TP53-bearing adenovirus (AdWTp53) changed cell cycle distribution and increased the levels of p21(WAF1/Cip1), but caused no changes in stathmin levels. Microtubule drug resistance in ovarian carcinoma may be associated with altered p53/21(WAF1/Cip1) regulatory pathways for stathmin expression and function.[1]References
- Altered levels and regulation of stathmin in paclitaxel-resistant ovarian cancer cells. Balachandran, R., Welsh, M.J., Day, B.W. Oncogene (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg