The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of endothelin-1 and big endothelin-1 in modulating coronary vascular tone, contractile function and severity of ischemia in rat hearts.

The effect of endothelin-1 (ET-1) and big ET-1 on coronary flow and contractile function was determined in isolated nonischemic and ischemic rat hearts. Both ET-1 (IC50 = 12 pMol) and big ET-1 (IC50 = 2 nMol) reduced coronary flow in a concentration-dependent manner, although ET-1 was > 100-fold more potent. Both compounds decreased contractility, an effect which was lost when coronary flow was held constant, indicating that ET-1 and big ET-1 decrease contractility secondary to reducing coronary flow. Mechanical reduction in coronary flow to levels equivalent to those seen for ET-1 or big ET-1 caused similar reductions in contractility. Both 30 pMol ET-1 and 10 nMol big ET-1 pretreatment significantly reduced the time to contracture in globally ischemic rat hearts, suggesting a proischemic effect. Phosphoramidon (100 microM, endothelin-converting enzyme inhibitor) and BQ-123 (0.3 microM, ETA receptor antagonist) abolished the preischemic increase in coronary perfusion pressure induced by big ET-1 as well as its proischemic effect, whereas only BQ-123 abolished the cardiac effect of ET-1. Neither phosphoramidon nor BQ-123 had an effect on severity of ischemia when given alone. Phosphoramidon was also given i.v. to rats subjected to coronary occlusion and reperfusion and was found to significantly reduce infarct size 24 hr postischemia. Thus, in isolated rat hearts, big ET-1 appears to be converted to ET-1 and is a potent coronary constrictor.(ABSTRACT TRUNCATED AT 250 WORDS)[1]

References

 
WikiGenes - Universities