The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution.

Gamma-Al2O3, ZrO2, and TiO2 gold supported model catalysts have been synthesized by laser vaporization. Structural characterization using Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy experiments have shown that the gold clusters deposited on the different supports have similar distribution of size centered around 3 nm and are in the metallic state. However, X-ray photoemission measurements also indicate lower binding energies than the usual Au 4f(7/2) at 84.0 eV for both alumina and titania supported catalysts, indicating a modification of the electronic structure of the metal. One has taken benefit of these features to study the influence of the nature of the support toward CO oxidation activities without being hindered by particle size or gold oxidic species effects. By comparing the activities of the different catalysts, it is concluded that the nature of the support directly affects the activity of gold. The following tendency is observed: titania and zirconia are superior to alumina as supports, titania being slightly better than zirconia. From XPS and activity results we can conclude that the existence of negatively charged clusters is not the key point to explain the high activity observed for Au/ZrO2 and Au/TiO2 catalysts and also that metallic Au is the major catalytically active phase. Hence, due to their very nature, titania and to a less extent zirconia should participate to the catalytic process.[1]


  1. Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. Arrii, S., Morfin, F., Renouprez, A.J., Rousset, J.L. J. Am. Chem. Soc. (2004) [Pubmed]
WikiGenes - Universities