The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Particle Size

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Particle Size


Psychiatry related information on Particle Size


High impact information on Particle Size

  • Particle size problems associated with other highly insoluble drugs and pesticides may be resolved by the use of nicarbazin-like complexes [8].
  • On the other hand, the risk of IHD in men having a combination of elevated LDL-C and triglyceride levels and reduced HDL-C levels was no longer significant (OR, 1.4; 95% CI, 0.5-3.5) after multivariate adjustment for fasting plasma insulin level, apolipoprotein B level, and LDL particle size [9].
  • The inhibition is independent of particle size, occurs within 15-30 min of addition of this glucose analogue to the medium at 37 degrees C, cannot be overcome by supra-agglutinating amounts of opsonizing antibody, and is completely reversible by substitution of 5.5 mM glucose for 50 mM 2-dG in the medium [10].
  • These compositional changes resulted in an incremental shift in apparent HDL particle size which correlated directly with the level of hLCAT expression, such that HE had the largest HDL particles and controls the smallest [11].
  • In the current study, these two lines were crossed producing control, HuCETPTg, HuAITg, and HuAICETPTg mice to study the influence of CETP on HDL cholesterol levels, particle size distribution, and metabolism in animals with mouse and human-like HDL [12].

Chemical compound and disease context of Particle Size


Biological context of Particle Size


Anatomical context of Particle Size

  • The influence of particle size and multiple apoprotein E-receptor interactions on the endocytic targeting of beta-VLDL in mouse peritoneal macrophages [22].
  • Using a nebulizer that generated aerosol droplets with a mass median aerodynamic diameter of 2.7 micron (55% of droplets were less than 3 micron, a particle size optimal for deposition on the alveolar epithelium), in vitro studies demonstrated that the aerosolized rAAT remained intact and fully functional as an inhibitor of neutrophil elastase [23].
  • SUMMARY: The currently available evidence suggests that several genetic variants in the CETP gene are associated with altered CETP plasma levels and activity, high-density lipoprotein-cholesterol plasma levels, low-density lipoprotein and high-density lipoprotein particle size, and perhaps the risk of coronary artery disease [24].
  • As compared with native LDL, the mast cell granule-modified LDL particles exhibit (i) increased particle size, (ii) selective loss of protein (apoB), (iii) a decrease in hydrated density, and (iv) stronger ionic interaction between apoB and heparin proteoglycan [25].
  • Cholesterol efflux from fibroblasts to discoidal lipoproteins with apolipoprotein A-I (LpA-I) increases with particle size but cholesterol transfer from LpA-I to lipoproteins decreases with size [26].

Associations of Particle Size with chemical compounds

  • Autoxidation of lipids and antioxidation by alpha-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein [27].
  • To determine whether Glu is enriched in thalamocortical terminals, we performed postembedding double-labeling immunocytochemistry for Glu and GABA, using different gold particle sizes [28].
  • The material bound to the column was analyzed by nondenaturing polyacrylamide gradient gel electrophoresis and found to contain three subpopulations of lipoproteins with a particle size of 12, 11, and 9 nm, respectively [29].
  • Disulfide bond formation led to a decrease in particle size relative to control peptide DNA condensates and prevented dissociation of peptide DNA condensates in concentrated sodium chloride [30].
  • Particles closely resembling rat high density lipoproteins (HDL) in terms of equilibrium density profile and particle size were prepared by sonication of apoA-I with a microemulsion made with egg lecithin and cholesterol oleate [31].

Gene context of Particle Size


Analytical, diagnostic and therapeutic context of Particle Size


  1. Independent effects of Apo E phenotype and plasma triglyceride on lipoprotein particle sizes in the fasting and postprandial states. Dart, A.M., Cooper, B. Arterioscler. Thromb. Vasc. Biol. (1999) [Pubmed]
  2. Differing associations of lipid and lipoprotein disturbances with the macrovascular and microvascular complications of type 1 diabetes. Chaturvedi, N., Fuller, J.H., Taskinen, M.R. Diabetes Care (2001) [Pubmed]
  3. Charged assembly helix motif in murine leukemia virus capsid: an important region for virus assembly and particle size determination. Cheslock, S.R., Poon, D.T., Fu, W., Rhodes, T.D., Henderson, L.E., Nagashima, K., McGrath, C.F., Hu, W.S. J. Virol. (2003) [Pubmed]
  4. Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. Pascot, A., Lemieux, I., Prud'homme, D., Tremblay, A., Nadeau, A., Couillard, C., Bergeron, J., Lamarche, B., Després, J.P. J. Lipid Res. (2001) [Pubmed]
  5. Apolipoprotein A-II/A-I ratio is a key determinant in vivo of HDL concentration and formation of pre-beta HDL containing apolipoprotein A-II. Pastier, D., Dugué, S., Boisfer, E., Atger, V., Tran, N.Q., van Tol, A., Chapman, M.J., Chambaz, J., Laplaud, P.M., Kalopissis, A.D. Biochemistry (2001) [Pubmed]
  6. The aerodynamic characteristics of cat allergen. Wood, R.A., Laheri, A.N., Eggleston, P.A. Clin. Exp. Allergy (1993) [Pubmed]
  7. Lasalocid and particle size of corn grain for dairy cows in early lactation. 2. Effect on ruminal measurements and feeding behavior. Knowlton, K.F., Allen, M.S., Erickson, P.S. J. Dairy Sci. (1996) [Pubmed]
  8. Nicarbazin complex yields dinitrocarbanilide as ultrafine crystals with improved anticoccidial activity. Rogers, E.F., Brown, R.D., Brown, J.E., Kazazis, D.M., Leanza, W.J., Nichols, J.R., Ostlind, D.A., Rodino, T.M. Science (1983) [Pubmed]
  9. Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease. Lamarche, B., Tchernof, A., Mauriège, P., Cantin, B., Dagenais, G.R., Lupien, P.J., Després, J.P. JAMA (1998) [Pubmed]
  10. 2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages. I. Description of the inhibitory effect. Michl, J., Ohlbaum, D.J., Silverstein, S.C. J. Exp. Med. (1976) [Pubmed]
  11. Hyperalphalipoproteinemia in human lecithin cholesterol acyltransferase transgenic rabbits. In vivo apolipoprotein A-I catabolism is delayed in a gene dose-dependent manner. Brousseau, M.E., Santamarina-Fojo, S., Zech, L.A., Bérard, A.M., Vaisman, B.L., Meyn, S.M., Powell, D., Brewer, H.B., Hoeg, J.M. J. Clin. Invest. (1996) [Pubmed]
  12. An interaction between the human cholesteryl ester transfer protein (CETP) and apolipoprotein A-I genes in transgenic mice results in a profound CETP-mediated depression of high density lipoprotein cholesterol levels. Hayek, T., Chajek-Shaul, T., Walsh, A., Agellon, L.B., Moulin, P., Tall, A.R., Breslow, J.L. J. Clin. Invest. (1992) [Pubmed]
  13. Changes in very low density lipoprotein particle size and production in response to sucrose feeding and hyperinsulinemia. Kazumi, T., Vranic, M., Steiner, G. Endocrinology (1985) [Pubmed]
  14. Optimization of technetium-99m-labeled PEG liposomes to image focal infection: effects of particle size and circulation time. Boerman, O.C., Oyen, W.J., van Bloois, L., Koenders, E.B., van der Meer, J.W., Corstens, F.H., Storm, G. J. Nucl. Med. (1997) [Pubmed]
  15. Oral estrogen improves serum lipids, homocysteine and fibrinolysis in elderly men. Giri, S., Thompson, P.D., Taxel, P., Contois, J.H., Otvos, J., Allen, R., Ens, G., Wu, A.H., Waters, D.D. Atherosclerosis (1998) [Pubmed]
  16. A 16-week fenofibrate treatment increases LDL particle size in type IIA dyslipidemic patients. Lemieux, I., Laperrière, L., Dzavik, V., Tremblay, G., Bourgeois, J., Després, J.P. Atherosclerosis (2002) [Pubmed]
  17. Recent progress in safety evaluation studies on plasticizers and plastics and their controlled use in Japan. Omori, Y. Environ. Health Perspect. (1976) [Pubmed]
  18. Linkage of low-density lipoprotein size to the lipoprotein lipase gene in heterozygous lipoprotein lipase deficiency. Hokanson, J.E., Brunzell, J.D., Jarvik, G.P., Wijsman, E.M., Austin, M.A. Am. J. Hum. Genet. (1999) [Pubmed]
  19. Human pedigree-based quantitative-trait-locus mapping: localization of two genes influencing HDL-cholesterol metabolism. Almasy, L., Hixson, J.E., Rainwater, D.L., Cole, S., Williams, J.T., Mahaney, M.C., VandeBerg, J.L., Stern, M.P., MacCluer, J.W., Blangero, J. Am. J. Hum. Genet. (1999) [Pubmed]
  20. Enhancement of hydroxylation and deglycosylation of 2'-deoxyguanosine by carcinogenic nickel compounds. Kasprzak, K.S., Hernandez, L. Cancer Res. (1989) [Pubmed]
  21. Fluticasone propionate plasma concentration and systemic effect: effect of delivery device and duration of administration. Whelan, G.J., Blumer, J.L., Martin, R.J., Szefler, S.J. J. Allergy Clin. Immunol. (2005) [Pubmed]
  22. The influence of particle size and multiple apoprotein E-receptor interactions on the endocytic targeting of beta-VLDL in mouse peritoneal macrophages. Tabas, I., Myers, J.N., Innerarity, T.L., Xu, X.X., Arnold, K., Boyles, J., Maxfield, F.R. J. Cell Biol. (1991) [Pubmed]
  23. Fate of aerosolized recombinant DNA-produced alpha 1-antitrypsin: use of the epithelial surface of the lower respiratory tract to administer proteins of therapeutic importance. Hubbard, R.C., Casolaro, M.A., Mitchell, M., Sellers, S.E., Arabia, F., Matthay, M.A., Crystal, R.G. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  24. CETP gene variation: relation to lipid parameters and cardiovascular risk. Boekholdt, S.M., Kuivenhoven, J.A., Hovingh, G.K., Jukema, J.W., Kastelein, J.J., van Tol, A. Curr. Opin. Lipidol. (2004) [Pubmed]
  25. Modification of low density lipoproteins by secretory granules of rat serosal mast cells. Kovanen, P.T., Kokkonen, J.O. J. Biol. Chem. (1991) [Pubmed]
  26. Cholesterol efflux from fibroblasts to discoidal lipoproteins with apolipoprotein A-I (LpA-I) increases with particle size but cholesterol transfer from LpA-I to lipoproteins decreases with size. Agnani, G., Marcel, Y.L. Biochemistry (1993) [Pubmed]
  27. Autoxidation of lipids and antioxidation by alpha-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Ingold, K.U., Bowry, V.W., Stocker, R., Walling, C. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  28. Glutamate in thalamic fibers terminating in layer IV of primary sensory cortex. Kharazia, V.N., Weinberg, R.J. J. Neurosci. (1994) [Pubmed]
  29. Synthesis and secretion of apolipoprotein A-I by chick skin. Tarugi, P., Albertazzi, L., Nicolini, S., Ottaviani, E., Calandra, S. J. Biol. Chem. (1991) [Pubmed]
  30. A potent new class of reductively activated peptide gene delivery agents. McKenzie, D.L., Kwok, K.Y., Rice, K.G. J. Biol. Chem. (2000) [Pubmed]
  31. Synthetic high density lipoprotein particles. Application to studies of the apoprotein specificity for selective uptake of cholesterol esters. Pittman, R.C., Glass, C.K., Atkinson, D., Small, D.M. J. Biol. Chem. (1987) [Pubmed]
  32. Phospholipid transfer protein is regulated by liver X receptors in vivo. Cao, G., Beyer, T.P., Yang, X.P., Schmidt, R.J., Zhang, Y., Bensch, W.R., Kauffman, R.F., Gao, H., Ryan, T.P., Liang, Y., Eacho, P.I., Jiang, X.C. J. Biol. Chem. (2002) [Pubmed]
  33. The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion. Lusa, S., Jauhiainen, M., Metso, J., Somerharju, P., Ehnholm, C. Biochem. J. (1996) [Pubmed]
  34. Lipoprotein lipase prevents the hepatic lipase-induced reduction in particle size of high density lipoproteins during incubation of human plasma. Newnham, H.H., Hopkins, G.J., Devlin, S., Barter, P.J. Atherosclerosis (1990) [Pubmed]
  35. Phosphatidylcholine transfer protein regulates size and hepatic uptake of high-density lipoproteins. Wu, M.K., Cohen, D.E. Am. J. Physiol. Gastrointest. Liver Physiol. (2005) [Pubmed]
  36. Atherogenic modified LDL in diabetes. Sobenin, I.A., Tertov, V.V., Orekhov, A.N. Diabetes (1996) [Pubmed]
  37. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. Bailey, R.E., Nie, S. J. Am. Chem. Soc. (2003) [Pubmed]
  38. Real time observation of the hydrothermal crystallization of barium titanate using in situ neutron powder diffraction. Walton, R.I., Millange, F., Smith, R.I., Hansen, T.C., O'Hare, D. J. Am. Chem. Soc. (2001) [Pubmed]
  39. Differences in low density lipoprotein subfractions and apolipoproteins in premenopausal and postmenopausal women. Campos, H., McNamara, J.R., Wilson, P.W., Ordovas, J.M., Schaefer, E.J. J. Clin. Endocrinol. Metab. (1988) [Pubmed]
  40. Effect of weight loss with reduction of intra-abdominal fat on lipid metabolism in older men. Purnell, J.Q., Kahn, S.E., Albers, J.J., Nevin, D.N., Brunzell, J.D., Schwartz, R.S. J. Clin. Endocrinol. Metab. (2000) [Pubmed]
WikiGenes - Universities