The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of myoglobin as a scavenger of cellular NO in myocardium.

Recent studies have detected a (1)H nuclear magnetic resonance (NMR) reporter signal of metmyoglobin (metMb) during bradykinin stimulation of an isolated mouse heart. The observation has led to the hypothesis that Mb reacts with cellular nitric oxide (NO). However, the hypothesis depends on an unequivocal detection of metMb signals in vivo. In solution, nitrite oxidization of Mb produces a characteristic set of paramagnetically shifted (1)H NMR signals. In the upfield spectral region, MbO(2) and MbCO exhibit the gammaCH(3) Val E11 signals at -2.8 and -2.4 ppm, respectively. In the same spectral region, nitrite oxidation of Mb produces a set of signals at -3.7 and -4.7 ppm at 35 degrees C. Previous studies have confirmed the visibility of metMb signals in perfused rat myocardium. With bradykinin infusion, perfusion pressure and rate-pressure product decrease, consistent with endogenous NO formation. However, neither myocardial O(2) consumption nor high-energy phosphate levels, as reflected in the (31)P NMR signals, show any significant change. Bradykinin still triggers a similar physiological response even in the presence of CO that is sufficient to inhibit 86% Mb. In all cases, the (1)H NMR spectra from perfused rat myocardium reveal no metMb signals. The results suggest that bradykinin-induced NO does not interact significantly with cellular Mb to produce an NMR-detectable quantity of metMb in the perfused rat myocardium. As a consequence, the experiments cannot confirm the intriguing proposal that Mb acts as a cellular NO scavenger.[1]

References

  1. Role of myoglobin as a scavenger of cellular NO in myocardium. Kreutzer, U., Jue, T. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
 
WikiGenes - Universities