The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Microbial transformation of pyrethroid insecticides in aqueous and sediment phases.

Recent studies showed that synthetic pyrethroids (SPs) can move via surface runoff into aquatic systems. Fifty-six of SP-degrading bacteria strains were isolated from contaminated sediments, of which six were evaluated for their ability to transform bifenthrin and permethrin in the aqueous phase and bifenthrin in the sediment phase. In the aqueous phase, bifenthrin was rapidly degraded by strains of Stenotrophomonas acidaminiphila, and the half-life (t1/2) was reduced from >700 h to 30 to 131 h. Permethrin isomers were degraded by Aeromonas sobria, Erwinia carotovora, and Yersinia frederiksenii. Similar to bifenthrin, the t1/2 of cis- and trans-permethrin was reduced by approximately 10-fold after bacteria inoculation. However, bifenthrin degradation by S. acidaminiphila was significantly inhibited in the presence of sediment, and the effect was likely caused by strong adsorption to the solid phase. Bifenthrin t1/2 was 343 to 466 h for a field sediment, and increased to 980 to 1200 h for a creek sediment. Bifenthrin degradation in the inoculated slurry treatments was not greatly enhanced when compared with the noninoculated system. Therefore, although SP-degrading bacteria may be widespread in aquatic systems, adsorption to sediment could render SPs unavailable to the degraders, thus prolonging their persistence.[1]


  1. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Lee, S., Gan, J., Kim, J.S., Kabashima, J.N., Crowley, D.E. Environ. Toxicol. Chem. (2004) [Pubmed]
WikiGenes - Universities