The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

BIFENTHRIN     (2-methyl-3-phenyl- phenyl)methyl 3-(2...

Synonyms: AC1L1HYC, CTK8E4318, 82657-04-3, Bifenthrin certified
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C10980

  • The pyrethroid bifenthrin, due to its high concentrations and relative toxicity as compared to other pyrethroids, was likely responsible for the majority of the toxicity at most sites [1].
  • When compared with controls dosed only with DNB, Bifenthrin tremor made both the ataxia and other functional effects caused by DNB more pronounced [2].
  • In the aqueous phase, bifenthrin was rapidly degraded by strains of Stenotrophomonas acidaminiphila, and the half-life (t1/2) was reduced from >700 h to 30 to 131 h [3].
  • The combined mosquitocidal activities of bifenthrin is considered more effective especially in the control of dengue vectors [4].
  • Bacillus thuringiensis Berliner var kurstaki controlled neonates within 3 days but was less active against late instars, with shorter residual action than bifenthrin or spinosad [5].
 

High impact information on C10980

 

Chemical compound and disease context of C10980

 

Biological context of C10980

 

Anatomical context of C10980

  • PolicosanolPlus((R)) and Neuroprevintrade mark are nutraceutical supplements which ameliorate the effects of bifenthrin on neurite outgrowth and retraction [18].
  • RESULTS: Bifenthrin was not toxic to PC12 cells at concentrations ranging from 1 x 10(-10) M to 1 x 10(-4) M [13].
  • Bifenthrin activates homotypic aggregation in human T-cell lines [17].
  • Here, we used the PC12 neuronal cell line to examine the effect of bifenthrin on the formation of neurites and the potential developmental neurotoxicity of this pesticide [15].
  • BACKGROUND: Here, we addressed the concern that, despite the lack of overt toxicity, exposure to low levels of the common household pyrethroid pesticide, bifenthrin, could cause harm to the immune system [17].
 

Associations of C10980 with other chemical compounds

 

Gene context of C10980

  • Expression of GRP94 was found to be increased and HSP27 lowered by the highest concentrations of bifenthrin commercial formulations [23].
  • CONCLUSIONS: The results here show that bifenthrin activates T-cell function by stimulating ICAM/LFA-1 mediated homotypic aggregation [17].
  • Bifenthrin with irrigation at 1 h after insecticide treatment provided better mole cricket control than that of irrigation at 5 min after treatment at 30 DAT only in the 1998 test [24].
  • Method development, validation, and analysis of bifenthrin residues in fresh and dry cilantro foliages and cilantro seeds using GC-ECD [25].
 

Analytical, diagnostic and therapeutic context of C10980

References

  1. Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Amweg, E.L., Weston, D.P., You, J., Lydy, M.J. Environ. Sci. Technol. (2006) [Pubmed]
  2. Increasing or decreasing nervous activity modulates the severity of the glio-vascular lesions of 1,3-dinitrobenzene in the rat: effects of the tremorgenic pyrethroid, Bifenthrin, and of anaesthesia. Holton, J.L., Nolan, C.C., Burr, S.A., Ray, D.E., Cavanagh, J.B. Acta Neuropathol. (1997) [Pubmed]
  3. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Lee, S., Gan, J., Kim, J.S., Kabashima, J.N., Crowley, D.E. Environ. Toxicol. Chem. (2004) [Pubmed]
  4. Preliminary field evaluation of the combined adulticidal, larvicidal, and wall residual activity of ULV-applied bifenthrin against mosquitoes. Lee, H.L., Khadri, M.S., Chiang, Y.F. J. Vector Ecol. (1997) [Pubmed]
  5. Managing Eastern tent caterpillars Malacosoma americanum (F) on horse farms to reduce risk of mare reproductive loss syndrome. Potter, D.A., Foss, L., Baumler, R.E., Held, D.W. Pest Manag. Sci. (2005) [Pubmed]
  6. Efficacy of various synthetic pyrethroid-impregnated encasement materials against house dust mite under laboratory conditions. Wongkamchai, S., Rongsriyam, K., Nochot, H., Mahakittikun, V., Sermsart, B., Choochote, W., Kanjanopart, K. Exp. Appl. Acarol. (2005) [Pubmed]
  7. Pyrethroid-Acarophenax lacunatus interaction in suppressing the beetle Rhyzopertha dominica on stored wheat. Gonçalves, J.R., Faroni, L.R., Guedes, R.N. Exp. Appl. Acarol. (2002) [Pubmed]
  8. Susceptibility of populations of Banks grass mites (Acari: Tetranychidae) suspected of developing bifenthrin resistance from three maize fields. Bynum, E.D., Archer, T.L. Exp. Appl. Acarol. (2002) [Pubmed]
  9. Comparative susceptibility and possible detoxification mechanisms for selected miticides in banks grass mite and two-spotted spider mite (Acari: Tetranychidae). Yang, X., Zhu, K.Y., Buschman, L.L., Margolies, D.C. Exp. Appl. Acarol. (2001) [Pubmed]
  10. Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, Tetranychus urticae. Van Leeuwen, T., Tirry, L. Pest Manag. Sci. (2007) [Pubmed]
  11. Use of carboxylesterase activity to remove pyrethroid-associated toxicity to Ceriodaphnia dubia and Hyalella azteca in toxicity identification evaluations. Wheelock, C.E., Miller, J.L., Miller, M.J., Phillips, B.M., Huntley, S.A., Gee, S.J., Tjeerdema, R.S., Hammock, B.D. Environ. Toxicol. Chem. (2006) [Pubmed]
  12. Probabilistic risk assessment of cotton pyrethroids: I. Distributional analyses of laboratory aquatic toxicity data. Solomon, K.R., Giddings, J.M., Maund, S.J. Environ. Toxicol. Chem. (2001) [Pubmed]
  13. Bifenthrin causes neurite retraction in the absence of cell death: a model for pesticide associated neurodegeneration. Nandi, A., Chandil, D., Lechesal, R., Pryor, S.C., McLaughlin, A., Bonventre, J.A., Flynnx, K., Weeks, B.S. Med. Sci. Monit. (2006) [Pubmed]
  14. The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Musser, F.R., Shelton, A.M. Pest Manag. Sci. (2005) [Pubmed]
  15. Bifenthrin inhibits neurite outgrowth in differentiating PC12 cells. Tran, V., Hoffman, N., Mofunanaya, A., Pryor, S.C., Ojugbele, O., McLaughlin, A., Gibson, L., Bonventre, J.A., Flynn, K., Weeks, B.S. Med. Sci. Monit. (2006) [Pubmed]
  16. Estimating occupational exposure to the pyrethroid termiticide bifenthrin by measuring metabolites in urine. Smith, P.A., Thompson, M.J., Edwards, J.W. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (2002) [Pubmed]
  17. Bifenthrin activates homotypic aggregation in human T-cell lines. Hoffman, N., Tran, V., Daniyan, A., Ojugbele, O., Pryor, S.C., Bonventre, J.A., Flynn, K., Weeks, B.S. Med. Sci. Monit. (2006) [Pubmed]
  18. PolicosanolPlus((R)) and Neuroprevintrade mark ameliorate pesticide-mediated inhibition of neurite outgrowth and neurite degeneration. Weeks, B.S., Perez, P.P. Med. Sci. Monit. (2006) [Pubmed]
  19. Influence of Portland cement amendment on soil pH and residual soil termiticide performance. Richman, D.L., Tucker, C.L., Koehler, P.G. Pest Manag. Sci. (2006) [Pubmed]
  20. Persistence and efficacy of termiticides used in preconstruction treatments to soil in Mississippi. Mulrooney, J.E., Davis, M.K., Wagner, T.L., Ingram, R.L. J. Econ. Entomol. (2006) [Pubmed]
  21. Efficacy of pyrethroid insecticides against domestic and peridomestic populations of Triatoma pallidipennis and Triatoma barberi (Reduviidae:Triatominae) vectors of Chagas' disease in Mexico. Ramsey, J.M., Cruz-Celis, A., Salgado, L., Espinosa, L., Ordoñez, R., Lopez, R., Schofield, C.J. J. Med. Entomol. (2003) [Pubmed]
  22. Effectiveness of bifenthrin (Onyx) and carbaryl (Sevin SL) for protecting individual, high-value conifers from bark beetle attack (Coleoptera: Curculionidae: Scolytinae) in the Western United States. Fettig, C.J., Allen, K.K., Borys, R.R., Christopherson, J., Dabney, C.P., Eager, T.J., Gibson, K.E., Hebertson, E.G., Long, D.F., Munson, A.S., Shea, P.J., Smith, S.L., Haverty, M.I. J. Econ. Entomol. (2006) [Pubmed]
  23. Relationship between toxicity of selected insecticides and expression of stress proteins (HSP, GRP) in cultured human cells: Effects of commercial formulations versus pure active molecules. Skandrani, D., Gaubin, Y., Vincent, C., Beau, B., Claude Murat, J., Soleilhavoup, J.P., Croute, F. Biochim. Biophys. Acta (2006) [Pubmed]
  24. Effect of irrigation on the efficacy of insecticides for controlling two species of mole crickets (Orthoptera: Gryllotalpidae) on golf courses. Xia, Y., Brandenburg, R.L. J. Econ. Entomol. (2000) [Pubmed]
  25. Method development, validation, and analysis of bifenthrin residues in fresh and dry cilantro foliages and cilantro seeds using GC-ECD. Jiang, W., Kon, R.T., Othoudt, R.A., Leavitt, R.A., Kumar, S., Geissel, L.D., Gomaa, E.A. Bulletin of environmental contamination and toxicology. (2004) [Pubmed]
  26. Effects of bifenthrin on Daphnia magna during chronic toxicity test and the recovery test. Ye, W.H., Wen, Y.Z., Liu, W.P., Wang, Z.Q. Journal of environmental sciences (China). (2004) [Pubmed]
 
WikiGenes - Universities