The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Yersinia


Psychiatry related information on Yersinia


High impact information on Yersinia


Chemical compound and disease context of Yersinia

  • Amino acids surrounding an essential Cys residue are highly conserved, as are other amino acids in the Yersinia and mammalian protein tyrosine phosphatases, suggesting that they use a common catalytic mechanism [13].
  • Controlled trial of tetracycline prophylaxis in individuals with persistently raised Yersinia enterocolitica antibody titres [14].
  • METHODS: Proximal colon from rabbits infected with Yersinia entercolitica, a pair-fed group, and controls was mounted in Ussing chambers, and Na+ transport, short-circuit current, and tissue conductance were examined during a basal period and after stimulation with the SCFAs, butyrate, or propionate [15].
  • This fragment, which is necessary and sufficient for Tir interaction, defines a new super domain in intimin that exhibits striking structural similarity to the integrin-binding domain of the Yersinia invasin and C-type lectin families [16].
  • Yersiniabactin (Ybt) synthetase is a three-subunit, 17-domain [7 domains in high molecular weight protein (HMWP)2, 9 in HMWP1, and 1 in YbtE] enzyme producing the virulence-conferring siderophore yersiniabactin in Yersinia pestis [17].

Biological context of Yersinia


Anatomical context of Yersinia

  • In this study, we investigated the activity of transcription factor NF-kappaB in macrophages infected with Yersinia enterocolitica [22].
  • The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation [23].
  • We infected the murine macrophage-like cell line J774A.1 with Yersinia pseudotuberculosis and investigated the specificity of YopH and YopHC403A, a catalytically inactive mutant derivative, for eukaryotic phosphoproteins [24].
  • These findings were verified in murine peritoneal macrophages by using recombinant LcrV truncates representing aa 1-130 from different Yersinia spp [25].
  • The activation response of neutrophils to nonpathogenic bacteria is greatly altered by exposure to Yersinia pestis, which may be a major factor contributing to the virulence and rapid progression of plague [26].

Gene context of Yersinia

  • The increased resistance in casp-1(-/)- animals appears specific for Salmonella infection since these mice were susceptible to colonization by another enteric pathogen, Yersinia pseudotuberculosis, which normally invades the PP [27].
  • The impact of this immunosuppressive effect for yersinia pathogenesis is underlined by the observation that TLR2-deficient mice are less susceptible to oral Y. enterocolitica infection than isogenic wild-type animals [28].
  • TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors [29].
  • Sequencing of codons 25-92 of the lcrV gene from 59 strains of the three pathogenic Yersinia species revealed a hypervariable hotspot within aa 40-61 [25].
  • A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence [25].

Analytical, diagnostic and therapeutic context of Yersinia

  • Site-directed mutagenesis, combined with detailed kinetic and mechanistic studies of Yersinia PTP, have contributed greatly to the understanding of the chemical mechanism for PTP catalysis, the nature of the enzymatic transition state, and the means by which the transition state is stabilized [30].
  • Identification of these crossreactive envelope proteins was achieved by Western blotting using affinity-purified anti-Y. enterocolitica antibodies that specifically react with the TSHR and, conversely, for envelope proteins of Yersinia [31].
  • Molecular cloning, iron-regulation and mutagenesis of the irp2 gene encoding HMWP2, a protein specific for the highly pathogenic Yersinia [32].
  • By immunoblotting using rabbit antibodies against Irp65 and chrome azurol S-agar, we were able to demonstrate that all tested mouse-lethal Y. enterocolitica and Yersinia pseudotuberculosis strains of different serotypes express siderophores and Irp65 [33].
  • CopN is homologous to the secreted protein YopN of Yersinia sp., and analysis of monolayers 20 h after infection via indirect immunofluorescence showed specific labelling of inclusion membranes when probed with CopN-specific antibodies but not with Scc1-specific antibodies [34].


  1. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Shao, F., Merritt, P.M., Bao, Z., Innes, R.W., Dixon, J.E. Cell (2002) [Pubmed]
  2. Neutrophil elastase targets virulence factors of enterobacteria. Weinrauch, Y., Drujan, D., Shapiro, S.D., Weiss, J., Zychlinsky, A. Nature (2002) [Pubmed]
  3. Transition from interleukin 1 beta (IL-1 beta) to IL-1 alpha production during maturation of inflammatory macrophages in vivo. Beuscher, H.U., Rausch, U.P., Otterness, I.G., Röllinghoff, M. J. Exp. Med. (1992) [Pubmed]
  4. Spontaneous Yersinia enterocolitica peritonitis in idiopathic hemochromatosis. Capron, J.P., Capron-Chivrac, D., Tossou, H., Delamarre, J., Eb, F. Gastroenterology (1984) [Pubmed]
  5. Patients with active Crohn's disease have elevated serum antibodies to antigens of seven enteric bacterial pathogens. Blaser, M.J., Miller, R.A., Lacher, J., Singleton, J.W. Gastroenterology (1984) [Pubmed]
  6. Tumor necrosis factor receptor p55 controls the severity of arthritis in experimental Yersinia enterocolitica infection. Zhao, Y.X., Zhang, H., Chiu, B., Payne, U., Inman, R.D. Arthritis Rheum. (1999) [Pubmed]
  7. Yersinia's stratagem: targeting innate and adaptive immune defense. Heesemann, J., Sing, A., Trülzsch, K. Curr. Opin. Microbiol. (2006) [Pubmed]
  8. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Isberg, R.R., Voorhis, D.L., Falkow, S. Cell (1987) [Pubmed]
  9. Yersinia lead SUMO attack. Cornelis, G.R., Denecker, G. Nat. Med. (2001) [Pubmed]
  10. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate. Stuckey, J.A., Schubert, H.L., Fauman, E.B., Zhang, Z.Y., Dixon, J.E., Saper, M.A. Nature (1994) [Pubmed]
  11. Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Rosqvist, R., Skurnik, M., Wolf-Watz, H. Nature (1988) [Pubmed]
  12. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Orth, K., Palmer, L.E., Bao, Z.Q., Stewart, S., Rudolph, A.E., Bliska, J.B., Dixon, J.E. Science (1999) [Pubmed]
  13. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Guan, K.L., Dixon, J.E. Science (1990) [Pubmed]
  14. Controlled trial of tetracycline prophylaxis in individuals with persistently raised Yersinia enterocolitica antibody titres. Agner, E., Larsen, J.H., Tougaard, L. Lancet (1981) [Pubmed]
  15. Inhibition of short-chain fatty acid absorption and Na+ absorption during acute colitis in the rabbit. Butzner, J.D., Meddings, J.B., Dalal, V. Gastroenterology (1994) [Pubmed]
  16. Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli. Batchelor, M., Prasannan, S., Daniell, S., Reece, S., Connerton, I., Bloomberg, G., Dougan, G., Frankel, G., Matthews, S. EMBO J. (2000) [Pubmed]
  17. Acyl-CoA hydrolysis by the high molecular weight protein 1 subunit of yersiniabactin synthetase: mutational evidence for a cascade of four acyl-enzyme intermediates during hydrolytic editing. Suo, Z., Chen, H., Walsh, C.T. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  18. The virulence plasmid of Yersinia, an antihost genome. Cornelis, G.R., Boland, A., Boyd, A.P., Geuijen, C., Iriarte, M., Neyt, C., Sory, M.P., Stainier, I. Microbiol. Mol. Biol. Rev. (1998) [Pubmed]
  19. Signal transduction-mediated adherence and entry of Helicobacter pylori into cultured cells. Su, B., Johansson, S., Fällman, M., Patarroyo, M., Granström, M., Normark, S. Gastroenterology (1999) [Pubmed]
  20. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. Bishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I., Raetz, C.R. EMBO J. (2000) [Pubmed]
  21. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Jerse, A.E., Yu, J., Tall, B.D., Kaper, J.B. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  22. Yersinia enterocolitica impairs activation of transcription factor NF-kappaB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. Ruckdeschel, K., Harb, S., Roggenkamp, A., Hornef, M., Zumbihl, R., Köhler, S., Heesemann, J., Rouot, B. J. Exp. Med. (1998) [Pubmed]
  23. The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation. Gerke, C., Falkow, S., Chien, Y.H. J. Exp. Med. (2005) [Pubmed]
  24. The Yersinia tyrosine phosphatase: specificity of a bacterial virulence determinant for phosphoproteins in the J774A.1 macrophage. Bliska, J.B., Clemens, J.C., Dixon, J.E., Falkow, S. J. Exp. Med. (1992) [Pubmed]
  25. A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence. Sing, A., Reithmeier-Rost, D., Granfors, K., Hill, J., Roggenkamp, A., Heesemann, J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  26. RNA expression patterns change dramatically in human neutrophils exposed to bacteria. Subrahmanyam, Y.V., Yamaga, S., Prashar, Y., Lee, H.H., Hoe, N.P., Kluger, Y., Gerstein, M., Goguen, J.D., Newburger, P.E., Weissman, S.M. Blood (2001) [Pubmed]
  27. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. Monack, D.M., Hersh, D., Ghori, N., Bouley, D., Zychlinsky, A., Falkow, S. J. Exp. Med. (2000) [Pubmed]
  28. Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. Sing, A., Rost, D., Tvardovskaia, N., Roggenkamp, A., Wiedemann, A., Kirschning, C.J., Aepfelbacher, M., Heesemann, J. J. Exp. Med. (2002) [Pubmed]
  29. TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. Iriarte, M., Sory, M.P., Boland, A., Boyd, A.P., Mills, S.D., Lambermont, I., Cornelis, G.R. EMBO J. (1998) [Pubmed]
  30. Chemical and mechanistic approaches to the study of protein tyrosine phosphatases. Zhang, Z.Y. Acc. Chem. Res. (2003) [Pubmed]
  31. Purification and characterization of Yersinia enterocolitica envelope proteins which induce antibodies that react with human thyrotropin receptor. Luo, G., Seetharamaiah, G.S., Niesel, D.W., Zhang, H., Peterson, J.W., Prabhakar, B.S., Klimpel, G.R. J. Immunol. (1994) [Pubmed]
  32. Molecular cloning, iron-regulation and mutagenesis of the irp2 gene encoding HMWP2, a protein specific for the highly pathogenic Yersinia. Carniel, E., Guiyoule, A., Guilvout, I., Mercereau-Puijalon, O. Mol. Microbiol. (1992) [Pubmed]
  33. Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane polypeptide of 65,000 Da and pesticin sensitivity. Heesemann, J., Hantke, K., Vocke, T., Saken, E., Rakin, A., Stojiljkovic, I., Berner, R. Mol. Microbiol. (1993) [Pubmed]
  34. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Fields, K.A., Hackstadt, T. Mol. Microbiol. (2000) [Pubmed]
WikiGenes - Universities