The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of phospholipase D1 in the regulation of mTOR activity by lysophosphatidic acid.

Mitogens activate protein translation through phosphorylation of p7S6 kinase (p70(S6K)) and eIF4E binding protein 1 (4E-BP1) mediated by the mammalian target of rapamycin (mTOR) or phosphoinositide 3-kinase ( PI3K). A recent report (Science 294, 1942, 2001) has implicated phospholipase D (PLD) in mTOR signaling. We studied the role of PLD in the phosphorylation of p70(S6K) and 4E-BP1 induced by lysophosphatidic acid (LPA) and platelet-derived growth factor (PDGF) using fibroblasts deficient in PLD activity and also 1-butanol, which inhibits phosphatidic acid production by PLD. The reduction in PLD activity in both situations impaired the effect of LPA on mTOR signaling but did not inhibit the effect of PDGF. PDGF induced marked phosphorylation of Akt (a PI3K target) but this was not affected by PLD deficiency. LPA caused much less phosphorylation of Akt and this was dependent on PLD activity. Toxin B, which inactivates Rho GTPases, markedly impaired PLD1 activation and phosphorylation of Akt, p70(S6K), and 4E-BP1 induced by LPA but had a minimal or no effect on the actions of PDGF. These results support the hypothesis that LPA activates protein translation through the action of PLD1-generated PA on mTOR and the PI3K/Akt pathway whereas PDGF acts through P13K/Akt independent of PLD1.[1]

References

 
WikiGenes - Universities