The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Eif4ebp1  -  eukaryotic translation initiation factor...

Rattus norvegicus

Synonyms: 4E-BP1, Eukaryotic translation initiation factor 4E-binding protein 1, PHAS-I, Phosphorylated heat-and acid-stable protein regulated by insulin 1, eIF4E-binding protein 1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Eif4ebp1

 

High impact information on Eif4ebp1

 

Biological context of Eif4ebp1

 

Anatomical context of Eif4ebp1

 

Associations of Eif4ebp1 with chemical compounds

 

Physical interactions of Eif4ebp1

 

Enzymatic interactions of Eif4ebp1

  • The mammalian target of rapamycin (mTOR) has been proposed to directly phosphorylate 4E-BP1 [19].
  • Leptin increased mammalian target of rapamycin (mTor) that phosphorylates 4E-BP1 [22].
 

Regulatory relationships of Eif4ebp1

 

Other interactions of Eif4ebp1

  • Results obtained with antibodies, immobilized PHAS-I, and a messenger RNA cap affinity resin indicated that PHAS-I did not bind eIF-4E when serine-64 was phosphorylated [6].
  • 40 S ribosomal protein S6, a target of p70(S6K), and 4E-BP1, a target of mTOR, were both phosphorylated within 15-25 min of T3 treatment and could be inhibited by wortmannin and rapamycin [25].
  • Overall, the results suggest that the leucine-induced enhancement of protein synthesis and the phosphorylation states of 4E-BP1 and S6K1 are facilitated by the transient increase in serum insulin [26].
  • In contrast, glucagon repressed both basal and amino acid-induced signaling through mTOR, as assessed by changes in the phosphorylation of 4E-BP1 and S6K1 [27].
  • Activation of Akt stimulated signaling through the protein kinase mammalian target of rapamycin, as evidenced by increased phosphorylation of two of its effectors, the ribosomal protein S6 kinase and the eukaryotic initiation factor eIF4E binding protein 1 [28].
 

Analytical, diagnostic and therapeutic context of Eif4ebp1

References

  1. Insulin fails to stimulate muscle protein synthesis in sepsis despite unimpaired signaling to 4E-BP1 and S6K1. Vary, T.C., Jefferson, L.S., Kimball, S.R. Am. J. Physiol. Endocrinol. Metab. (2001) [Pubmed]
  2. Inactivation of eIF2B and phosphorylation of PHAS-I in heat-shocked rat hepatoma cells. Scheper, G.C., Mulder, J., Kleijn, M., Voorma, H.O., Thomas, A.A., van Wijk, R. J. Biol. Chem. (1997) [Pubmed]
  3. Amino acids regulate skeletal muscle PHAS-I and p70 S6-kinase phosphorylation independently of insulin. Long, W., Saffer, L., Wei, L., Barrett, E.J. Am. J. Physiol. Endocrinol. Metab. (2000) [Pubmed]
  4. Hypoxia increases the association of 4E-binding protein 1 with the initiation factor 4E in isolated rat hepatocytes. Tinton, S.A., Buc-Calderon, P.M. FEBS Lett. (1999) [Pubmed]
  5. Cellular energy status modulates translational control mechanisms in ischemic-reperfused rat hearts. Crozier, S.J., Vary, T.C., Kimball, S.R., Jefferson, L.S. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
  6. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Lin, T.A., Kong, X., Haystead, T.A., Pause, A., Belsham, G., Sonenberg, N., Lawrence, J.C. Science (1994) [Pubmed]
  7. Regulation of protein synthesis by cholecystokinin in rat pancreatic acini involves PHAS-I and the p70 S6 kinase pathway. Bragado, M.J., Groblewski, G.E., Williams, J.A. Gastroenterology (1998) [Pubmed]
  8. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Graves, L.M., Bornfeldt, K.E., Argast, G.M., Krebs, E.G., Kong, X., Lin, T.A., Lawrence, J.C. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  9. Angiotensin II stimulates phosphorylation of the translational repressor 4E-binding protein 1 by a mitogen-activated protein kinase-independent mechanism. Fleurent, M., Gingras, A.C., Sonenberg, N., Meloche, S. J. Biol. Chem. (1997) [Pubmed]
  10. Ischaemia induces changes in the association of the binding protein 4E-BP1 and eukaryotic initiation factor (eIF) 4G to eIF4E in differentiated PC12 cells. Martín, M.E., Muñoz, F.M., Salinas, M., Fando, J.L. Biochem. J. (2000) [Pubmed]
  11. Phosphorylation of the eIF4E-binding protein PHAS-I after exposure of PC12 cells to EGF and NGF. Kleijn, M., Korthout, M.M., Voorma, H.O., Thomas, A.A. FEBS Lett. (1996) [Pubmed]
  12. Molecular cloning and tissue distribution of PHAS-I, an intracellular target for insulin and growth factors. Hu, C., Pang, S., Kong, X., Velleca, M., Lawrence, J.C. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  13. A potential role for extracellular signal-regulated kinases in prostaglandin F2alpha-induced protein synthesis in smooth muscle cells. Rao, G.N., Madamanchi, N.R., Lele, M., Gadiparthi, L., Gingras, A.C., Eling, T.E., Sonenberg, N. J. Biol. Chem. (1999) [Pubmed]
  14. Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle. Lang, C.H., Frost, R.A. J. Cell. Physiol. (2005) [Pubmed]
  15. Endotoxin (LPS) stimulates 4E-BP1/PHAS-I phosphorylation in macrophages. Potter, M.W., Shah, S.A., Elbirt, K.K., Callery, M.P. J. Surg. Res. (2001) [Pubmed]
  16. Arginine and Leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells. Ban, H., Shigemitsu, K., Yamatsuji, T., Haisa, M., Nakajo, T., Takaoka, M., Nobuhisa, T., Gunduz, M., Tanaka, N., Naomoto, Y. Int. J. Mol. Med. (2004) [Pubmed]
  17. N-acetyl-cysteine abolishes hydrogen peroxide-induced modification of eukaryotic initiation factor 4F activity via distinct signalling pathways. O'Loghlen, A., Pérez-Morgado, M.I., Salinas, M., Martín, M.E. Cell. Signal. (2006) [Pubmed]
  18. Phosphatidylinositol 3-kinase in angiotensin II-induced hypertrophy of vascular smooth muscle cells. Yamakawa, T., Tanaka, S., Kamei, J., Kadonosono, K., Okuda, K. Eur. J. Pharmacol. (2003) [Pubmed]
  19. Rapamycin-insensitive regulation of 4e-BP1 in regenerating rat liver. Jiang, Y.P., Ballou, L.M., Lin, R.Z. J. Biol. Chem. (2001) [Pubmed]
  20. Dissociation of the eukaryotic initiation factor-4E/4E-BP1 complex involves phosphorylation of 4E-BP1 by an mTOR-associated kinase. Heesom, K.J., Denton, R.M. FEBS Lett. (1999) [Pubmed]
  21. Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Lynch, C.J., Patson, B.J., Anthony, J., Vaval, A., Jefferson, L.S., Vary, T.C. Am. J. Physiol. Endocrinol. Metab. (2002) [Pubmed]
  22. Effect of leptin on liver alcohol dehydrogenase. Mezey, E., Rennie-Tankersley, L., Potter, J.J. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  23. IGF-I induced phosphorylation of S6K1 and 4E-BP1 in heart is impaired by acute alcohol intoxication. Lang, C.H., Kumar, V., Liu, X., Frost, R.A., Vary, T.C. Alcohol. Clin. Exp. Res. (2003) [Pubmed]
  24. Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: comparison with the effects of insulin. Takei, N., Kawamura, M., Hara, K., Yonezawa, K., Nawa, H. J. Biol. Chem. (2001) [Pubmed]
  25. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. Kenessey, A., Ojamaa, K. J. Biol. Chem. (2006) [Pubmed]
  26. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Anthony, J.C., Lang, C.H., Crozier, S.J., Anthony, T.G., MacLean, D.A., Kimball, S.R., Jefferson, L.S. Am. J. Physiol. Endocrinol. Metab. (2002) [Pubmed]
  27. Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase. Kimball, S.R., Siegfried, B.A., Jefferson, L.S. J. Biol. Chem. (2004) [Pubmed]
  28. Activation of signaling pathways and regulatory mechanisms of mRNA translation following myocardial ischemia-reperfusion. Crozier, S.J., Zhang, X., Wang, J., Cheung, J., Kimball, S.R., Jefferson, L.S. J. Appl. Physiol. (2006) [Pubmed]
  29. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. Anthony, J.C., Anthony, T.G., Kimball, S.R., Jefferson, L.S. J. Nutr. (2001) [Pubmed]
 
WikiGenes - Universities