The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Pld1  -  phospholipase D1

Rattus norvegicus

Synonyms: Choline phosphatase 1, PLD 1, Phosphatidylcholine-hydrolyzing phospholipase D1, Phospholipase D1, Pld1a, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pld1

 

High impact information on Pld1

 

Chemical compound and disease context of Pld1

 

Biological context of Pld1

 

Anatomical context of Pld1

 

Associations of Pld1 with chemical compounds

  • These data support the hypothesis that PLD participates in myogenesis through PA- and PIP2-dependent actin fiber formation [20].
  • 1-Butanol selectively inhibited this response, whereas PLD1b overexpression induced SFLS formation, showing that it was PLD dependent [20].
  • Endogenous PLD1 was located at the level of SFLSs, and by means of an intracellularly expressed fluorescent probe, PA was shown to be accumulated along these structures in response to AVP [20].
  • Phospholipase D is associated in a phorbol ester-dependent manner with protein kinase C-alpha and with a 220-kDa protein which is phosphorylated on serine and threonine [2].
  • This interaction was increased by phorbol myristate acetate (PMA) treatment. p220 was phosphorylated on serine/threonine in PMA-stimulated Rat1 cells, and rPLD1 expressed in Sf9 cells was also serine/threonine phosphorylated in response to PMA treatment [2].
 

Physical interactions of Pld1

 

Regulatory relationships of Pld1

  • Phospholipase D elevates the level of MDM2 and suppresses DNA damage-induced increases in p53 [15].
  • Increased PLD activity induced by PMA treatment resulted in elevated synapsin I expression and neurite outgrowth during neuronal differentiation [24].
  • Many studies have shown that phospholipase D (PLD) is activated by protein kinase C (PKC) in vivo and in vitro [2].
  • We used Rat-1 fibroblasts expressing the alpha(1A) adrenergic receptor to study if this G(q)-coupled receptor uses PLD to regulate mTOR signaling [25].
  • However, the molecular mechanism of EGF-induced PLD activation has not yet been elucidated [26].
 

Other interactions of Pld1

  • These data provide evidence that survival signals generated by PLD involve suppression of the p53 response pathway [15].
  • Conversely, myogenesis was potentiated by PLD1b isoform overexpression but not by PLD2 overexpression, establishing that PLD1 is involved in this process [20].
  • To figure out the effect of PLD on synapsin I expression, we treated the neural stem cells with phorbol myristate acetate (PMA) to stimulate PLD activity [24].
  • Role of phospholipase D1 in the regulation of mTOR activity by lysophosphatidic acid [27].
  • Arf-1, a catalytic activator, stimulated PLD1 by enhancing the catalytic constant, kcat [16].
 

Analytical, diagnostic and therapeutic context of Pld1

References

  1. Bradykinin activates phospholipase D2 via protein kinase cdelta in PC12 cells. Lee, S.D., Lee, B.D., Kim, Y., Suh, P.G., Ryu, S.H. Neurosci. Lett. (2000) [Pubmed]
  2. Phospholipase D is associated in a phorbol ester-dependent manner with protein kinase C-alpha and with a 220-kDa protein which is phosphorylated on serine and threonine. Min, D.S., Exton, J.H. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  3. Expression of phospholipase D isozymes in scar and viable tissue in congestive heart failure due to myocardial infarction. Dent, M.R., Singal, T., Dhalla, N.S., Tappia, P.S. J. Cell. Mol. Med. (2004) [Pubmed]
  4. Activation of rat liver phospholipase D by the small GTP-binding protein RhoA. Malcolm, K.C., Ross, A.H., Qiu, R.G., Symons, M., Exton, J.H. J. Biol. Chem. (1994) [Pubmed]
  5. ANG II stimulates phospholipase D through PKCzeta activation in VSMC: implications in adhesion, spreading, and hypertrophy. Parmentier, J.H., Pavicevic, Z., Malik, K.U. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  6. Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock. Wagner, J.A., Varga, K., Ellis, E.F., Rzigalinski, B.A., Martin, B.R., Kunos, G. Nature (1997) [Pubmed]
  7. Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. Lalli, G., Hall, A. J. Cell Biol. (2005) [Pubmed]
  8. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. Du, G., Altshuller, Y.M., Vitale, N., Huang, P., Chasserot-Golaz, S., Morris, A.J., Bader, M.F., Frohman, M.A. J. Cell Biol. (2003) [Pubmed]
  9. Activation of phospholipase D by the small GTPase Sar1p is required to support COPII assembly and ER export. Pathre, P., Shome, K., Blumental-Perry, A., Bielli, A., Haney, C.J., Alber, S., Watkins, S.C., Romero, G., Aridor, M. EMBO J. (2003) [Pubmed]
  10. Differential mRNA expression of phospholipase D (PLD) isozymes during cAMP-induced differentiation in C6 glioma cells. Yoshimura, S., Nakashima, S., Ohguchi, K., Sakai, H., Shinoda, J., Sakai, N., Nozawa, Y. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  11. High glucose-induced membrane translocation of PKC betaI is associated with Arf6 in glomerular mesangial cells. Padival, A.K., Hawkins, K.S., Huang, C. Mol. Cell. Biochem. (2004) [Pubmed]
  12. Alterations of sarcolemmal phospholipase D and phosphatidate phosphohydrolase in congestive heart failure. Yu, C.H., Panagia, V., Tappia, P.S., Liu, S.Y., Takeda, N., Dhalla, N.S. Biochim. Biophys. Acta (2002) [Pubmed]
  13. Phospholipase D mimics platelet-derived growth factor as a competence factor in vascular smooth muscle cells. Kondo, T., Inui, H., Konishi, F., Inagami, T. J. Biol. Chem. (1992) [Pubmed]
  14. Molecular cloning and chromosome mapping of rat phospholipase D genes, Pld1a, Pld1b and Pld2. Nakashima, S., Matsuda, Y., Akao, Y., Yoshimura, S., Sakai, H., Hayakawa, K., Andoh, M., Nozawa, Y. Cytogenet. Cell Genet. (1997) [Pubmed]
  15. Phospholipase D elevates the level of MDM2 and suppresses DNA damage-induced increases in p53. Hui, L., Abbas, T., Pielak, R.M., Joseph, T., Bargonetti, J., Foster, D.A. Mol. Cell. Biol. (2004) [Pubmed]
  16. Kinetic analysis of a mammalian phospholipase D: allosteric modulation by monomeric GTPases, protein kinase C, and polyphosphoinositides. Henage, L.G., Exton, J.H., Brown, H.A. J. Biol. Chem. (2006) [Pubmed]
  17. Phospholipase D2 is localized to the rims of the Golgi apparatus in mammalian cells. Freyberg, Z., Bourgoin, S., Shields, D. Mol. Biol. Cell (2002) [Pubmed]
  18. Calphostin-C induction of vascular smooth muscle cell apoptosis proceeds through phospholipase D and microtubule inhibition. Zheng, X.L., Gui, Y., Du, G., Frohman, M.A., Peng, D.Q. J. Biol. Chem. (2004) [Pubmed]
  19. Continual production of phosphatidic acid by phospholipase D is essential for antigen-stimulated membrane ruffling in cultured mast cells. O'Luanaigh, N., Pardo, R., Fensome, A., Allen-Baume, V., Jones, D., Holt, M.R., Cockcroft, S. Mol. Biol. Cell (2002) [Pubmed]
  20. Phospholipase D is involved in myogenic differentiation through remodeling of actin cytoskeleton. Komati, H., Naro, F., Mebarek, S., De Arcangelis, V., Adamo, S., Lagarde, M., Prigent, A.F., Némoz, G. Mol. Biol. Cell (2005) [Pubmed]
  21. Binding of Cdc42 to phospholipase D1 is important in neurite outgrowth of neural stem cells. Yoon, M.S., Cho, C.H., Lee, K.S., Han, J.S. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  22. Ras-independent activation of Ral by a Ca(2+)-dependent pathway. Hofer, F., Berdeaux, R., Martin, G.S. Curr. Biol. (1998) [Pubmed]
  23. Low molecular weight GTP-binding proteins in hepatocytes and an assessment of the role of p21ras proteins in the activation of phospholipase D. Hurst, K.M., Chataway, T.K., Hughes, B.P., Barritt, G.J. Biochem. Int. (1991) [Pubmed]
  24. Role of phospholipase D1 in neurite outgrowth of neural stem cells. Yoon, M.S., Yon, C., Park, S.Y., Oh, D.Y., Han, A.H., Kim, D.S., Han, J.S. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  25. Ca(2+)- and phospholipase D-dependent and -independent pathways activate mTOR signaling. Ballou, L.M., Jiang, Y.P., Du, G., Frohman, M.A., Lin, R.Z. FEBS Lett. (2003) [Pubmed]
  26. Localization of phospholipase D1 to caveolin-enriched membrane via palmitoylation: implications for epidermal growth factor signaling. Han, J.M., Kim, Y., Lee, J.S., Lee, C.S., Lee, B.D., Ohba, M., Kuroki, T., Suh, P.G., Ryu, S.H. Mol. Biol. Cell (2002) [Pubmed]
  27. Role of phospholipase D1 in the regulation of mTOR activity by lysophosphatidic acid. Kam, Y., Exton, J.H. FASEB J. (2004) [Pubmed]
  28. Stability of phospholipase D in primary astrocytes. Jin, S., Schatter, B., Weichel, O., Walev, I., Ryu, S., Klein, J. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  29. Antigen-stimulated activation of phospholipase D1b by Rac1, ARF6, and PKCalpha in RBL-2H3 cells. Powner, D.J., Hodgkin, M.N., Wakelam, M.J. Mol. Biol. Cell (2002) [Pubmed]
  30. Prostacyclin production in rat aortic smooth muscle cells: role of protein kinase C, phospholipase D and cyclooxygenase-2 expression. Frias, M.A., Dubouloz, F., Rebsamen, M.C., Lang, U. Cardiovasc. Res. (2003) [Pubmed]
 
WikiGenes - Universities