The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes.

Invasive strains of Pseudomonas aeruginosa can cause rapid host cell apoptosis by injecting the type III effector molecule ExoS. A transposon insertional mutant bank of P. aeruginosa was screened to identify P. aeruginosa genes that contribute to the ability of the bacteria to trigger host cell apoptosis. Several isolated mutants had disruptions in the fimV gene. A fimV mutant was unable to induce the expression of exoS, exoT and exsA genes under type III inducing conditions, thus exhibiting a defect in type III protein secretion. Furthermore, this mutant was defective in twitching motility, although type IV pili were present on the bacterial surface. Complementation by a fimV-containing cosmid clone restored both phenotypes to the wild-type levels. However, expression of the type III genes in the fimV mutant was not restored by the introduction of a fimV gene alone, although it restored the twitching motility. A gene downstream of fimV, encoding a tRNA pseudouridine synthase (truA) homologue, was able to complement the type III gene expression defect of the fimV mutant. Thus fimV and truA form an operon and fimV mutation has a polar effect on truA. Indeed, a truA mutant is defective in type III gene expression while its twitching motility is unaffected, and a truA clone is able to complement the type III secretion defect. Pseudouridination of tRNAs is important for tRNA structure, thereby improving the fidelity of protein synthesis and helping to maintain the proper reading frame; thus the results imply that truA controls tRNAs that are critical for the translation of type III genes or their regulators.[1]


  1. The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. Ahn, K.S., Ha, U., Jia, J., Wu, D., Jin, S. Microbiology (Reading, Engl.) (2004) [Pubmed]
WikiGenes - Universities