The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Asymmetric localization of LGN but not AGS3, two homologs of Drosophila pins, in dividing human neural progenitor cells.

Human neural progenitor cells (hNPCs) can be recovered from postmortem human brains and used to study the molecular basis of neurogenesis. Human NPCs are being used to investigate the molecular basis of cell fate determination during stem cell divisions, based on comparison with the Drosophila model system. Drosophila neuroblasts and sensory organ precursors undergo well-defined asymmetric cell divisions (ACD), under the control of a genetically defined set of apical and basal determinants that are localized tightly and dynamically during division. We show by indirect immunofluorescence, confocal microscopy, and time-lapse video-microscopy that LGN and AGS3, two human homologs of the Drosophila ACD determinant Pins, have distinct patterns of localization in hNPCs. When cells are grown under conditions favoring proliferation, LGN is distributed asymmetrically in a cell cycle-dependent manner; it localizes to one side of the dividing cell and segregates into one of the daughter cells. When the cells are grown under conditions favoring differentiation, LGN accumulates in double foci similar to those containing the mitotic apparatus protein NuMA, and in a pattern shown previously for LGN and NuMA in differentiated cells. AGS3, a slightly more distant Pins homolog than LGN, does not show asymmetric localization in these cells. The progenitor cell marker nestin also localizes asymmetrically in colcemid-treated hNPCs and colocalizes with LGN. The results suggest that hNPCs undergo ACD and that similar molecular pathways may underlie these divisions in Drosophila and human cells.[1]

References

 
WikiGenes - Universities