The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Defective endoplasmic reticulum-resident membrane protein CLN6 affects lysosomal degradation of endocytosed arylsulfatase A.

Variant late infantile neuronal ceroid lipofuscinosis, a lysosomal storage disorder characterized by progressive mental deterioration and blindness, is caused by mutations in a polytopic membrane protein (CLN6) with unknown intracellular localization and function. In this study, transient transfection of BHK21 cells with CLN6 cDNA and immunoblot analysis using peptide-specific CLN6 antibodies demonstrated the expression of a approximately 27-kDa protein that does not undergo proteolytic processing. Cross-linking experiments revealed the presence of CLN6 dimers. Using double immunofluorescence microscopy, epitope-tagged CLN6 was shown to be retained in the endoplasmic reticulum (ER) with no colocalization with the cis-Golgi or lysosomal markers. The translocation into the ER and proper folding were confirmed by the N-linked glycosylation of a mutant CLN6 polypeptide. Pulse-chase labeling of fibroblasts from CLN6 patients and from sheep (OCL6) and mouse (nclf) models of the disease followed by immunoprecipitation of cathepsin D indicated that neither the synthesis, sorting nor the proteolytic processing of this lysosomal enzyme was affected in CLN6-defective cells. However, the degradation of the endocytosed index protein arylsulfatase A was strongly reduced in all of the mutant CLN6 cell lines compared with controls. These data suggest that defects in the ER-resident CLN6 protein lead to lysosomal dysfunctions, which may result in lysosomal accumulation of storage material.[1]

References

  1. Defective endoplasmic reticulum-resident membrane protein CLN6 affects lysosomal degradation of endocytosed arylsulfatase A. Heine, C., Koch, B., Storch, S., Kohlschütter, A., Palmer, D.N., Braulke, T. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities