The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanisms of citral phototoxicity.

Citral, a monoterpene aldehyde synthesized by several plant genera, has been reported to exhibit antimicrobial activity. For the first time, we report that critral exhibits UV-A (315-400 nm) light enhanced oxygen-dependent toxicity against a series of Escherichia coli strains differing in DNA repair and catalase proficiency. Those E. coli strains carrying a gene leading to catalase deficiency (katF) are particularly sensitized to inactivation by citral and UV-A treatment when compared to catalase proficient strains (katF+). Consistent with these in vivo observations, citral when treated with UV-A in vitro produces H2O2. When tested against Fusarium oxysporum and F. solani, fungal root pathogens of Citrus, enhanced toxicity by citral in the presence of UV-A was demonstrated, while dark toxicity was negligible. When the plasmid pBR322 was treated with citral in the presence of UV-A, a change in conformation from the covalently closed circular to the open circular and, ultimately, the linear form was observed. The change in plasmid conformation corresponded to a reduction in transforming activity. Holding plasmid DNA which had been treated with UV-A light in the presence of citral at 4 degrees C for 22 h in the dark resulted in continued degradation of the DNA and loss of transforming activity. Holding plasmid DNA treated with UV-A or citral alone under identical conditions had no detectable effect on either plasmid conformation or transforming activity.[1]

References

  1. Mechanisms of citral phototoxicity. Asthana, A., Larson, R.A., Marley, K.A., Tuveson, R.W. Photochem. Photobiol. (1992) [Pubmed]
 
WikiGenes - Universities