Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs.
Dendritic cells (DCs) show a functional plasticity in determining Th responses depending on their maturational stage or on maturational signals delivered to the DCs. Human plasmacytoid DCs (PDCs) can induce either Th1- or Th2-type immune responses upon exposure to viruses or IL-3, respectively. In this study we have investigated the Th-polarizing capacity of PDCs after short (24-h) or long (72-h) culture with stimuli and have assessed the expression and function of OX40 ligand (OX40L) in PDC- mediated Th polarization in addition to type I IFN-dependent responses. IL-3-treated PDCs expressed OX40L, but produced almost no IFN-alpha in response to T cell stimulation (CD40 ligand or T cell interaction), resulting in the preferential priming of Th2 cells through OX40L-dependent mechanisms. Meanwhile, PDCs were rapidly endowed by viral infection (Sendai virus) with a high potency to develop IFN-gamma- producing Th cells depending on their capacity to residually produce IFN-alpha. Although Sendai virus-stimulated PDCs simultaneously expressed OX40L in their maturational process, the Th1-inducing effect of endogenous type I IFNs may overcome and thus conceal the OX40L-dependent Th2 responses. However, during maturation in response to Sendai virus over the longer 72-h period, the expression level of OX40L was up-regulated, whereas the residual IFN-alpha-producing ability was down-regulated, and consequently, the PDCs with prolonged Sendai virus stimulation induced Th2 responses to some extent. Thus, PDCs have the distinct means to dictate an appropriate response to environmental stimuli.[1]References
- Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. Ito, T., Amakawa, R., Inaba, M., Hori, T., Ota, M., Nakamura, K., Takebayashi, M., Miyaji, M., Yoshimura, T., Inaba, K., Fukuhara, S. J. Immunol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg