The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A Leu----His substitution at residue 93 in human corticosteroid binding globulin results in reduced affinity for cortisol.

A steroid binding capacity assay and a radioimmunoassay were both used to measure corticosteroid binding globulin (CBG) in serum samples from 22 patients with sepsis. An approximately 50% discordancy between the two values in one patient suggested the presence of a CBG variant with reduced affinity for cortisol, and this was confirmed by Scatchard analysis. We therefore used the polymerase chain reaction to amplify exons that encode for human CBG from the genomic DNA of this patient. This revealed two mutations within the coding sequences: one of which results in a Leu----His substitution at residue 93 and another which encodes a Ser----Ala substitution at residue 224 of the human CBG polypeptide. To assess the impact of each substitution on the steroid binding affinity of CBG, each mutation was introduced separately into a normal human CBG cDNA, and the normal and mutated cDNAs were expressed in Chinese hamster ovary cells. Scatchard analysis of the CBG produced in culture indicated that the His93 mutation (Kd = 2.24 +/- 1.75 nM) reduced the cortisol binding affinity of CBG (mean +/- SD) significantly (P less than 0.024) when compared to normal CBG (Kd = 0.64 +/- 0.31 nM), while the Ala224 mutation (Kd = 0.63 +/- 0.33 nM) did not influence cortisol binding affinity. We therefore conclude that residue 93 may play an important role in determining the structure of the CBG steroid binding site.[1]

References

 
WikiGenes - Universities