The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A new method for imaging and 3D reconstruction of mammalian cochlea by fluorescent confocal microscopy.

Traditional methods for anatomical and morphometric studies of cochlear tissues have relied upon either microdissection of the organ of Corti or the generation of serial sections of the cochlea. Such methods are time-consuming, disruptive to three-dimensional relationships and often restrict sampling to very limited numbers of cells. We have found that cells and tissue components of the cochlear duct may be labelled by fluorescent markers within intact cochleae, which are then embedded in epoxy resin for subsequent viewing by fluorescent microscopy methods. This approach allows imaging through thick optical volumes with preservation of three-dimensional relationships. Unlike sectioned tissue, alignment of the sample relative to the focal axis may be easily corrected by re-orientation of the optical volume with common image processing software. Fluorescently labelled cochleae embedded in epoxy can be viewed by most fluorescent microscopy methods including laser scanning confocal microscopy, multi-photon confocal microscopy and widefield epi-fluorescence microscopy with deconvolution. Furthermore, semi-thin sections made from these preparations are compatible with traditional histological stains, as well as allowing brightly labelled epi-fluorescent images.[1]

References

 
WikiGenes - Universities