The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cochlear Duct

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cochlear Duct

 

Psychiatry related information on Cochlear Duct

 

High impact information on Cochlear Duct

 

Chemical compound and disease context of Cochlear Duct

 

Biological context of Cochlear Duct

 

Anatomical context of Cochlear Duct

 

Associations of Cochlear Duct with chemical compounds

  • 4-aminopyridine in scala media reversibly alters the cochlear potentials and suppresses electrically evoked oto-acoustic emissions [17].
  • To examine this question, we measured, in the presence of LiCl, the accumulation of (3H)-IPs induced by carbachol, in the developing chick cochlear duct during a period ranging from embryonic day (E) 8 to post-hatching day (P) 20 [18].
  • Activation of muscarinic cholinergic receptors stimulates inositol phosphates synthesis in the developing avian cochlear duct [18].
  • We have found that cells and tissue components of the cochlear duct may be labelled by fluorescent markers within intact cochleae, which are then embedded in epoxy resin for subsequent viewing by fluorescent microscopy methods [19].
  • Possible mechanisms for this phenomenon include a reduced electrostatic attraction of chloride ions to the scala media due to a decreased EP and a reduction of passive influx of chloride into endolymph, resulting from a reduction of active inward potassium transport by furosemide [20].
 

Gene context of Cochlear Duct

  • Results from PCR and in situ hybridization indicate that Id1, Id2, and Id3 are expressed within the cochlear duct in a pattern that is consistent with a role in regulation of hair cell development [21].
  • 5. Myh9 expression was found to persist within the epithelia surrounding the cochlear duct at E13.5 and E16 [22].
  • EphB1 and its potential ligands ephrin-B1 and ephrin-B2 showed a segregated layered expression in the lateral wall of the cochlear duct (the external sulcus), which together with EphA4 expressed in the area, form a four-layered structure with an alternating pattern of receptors and ligands in the different layers [23].
  • At E13, Isl1 is maintained at relatively high levels in the sensory primordium while down-regulated in the other regions of the cochlear duct [24].
  • Complementary patterns of EphA4 and its potential ligand ephrin-A2 were found, with ephrin-A2 in many of the structures lining the cochlear duct and within the cochlear nerve cells, and EphA4 in the deeper structures underlying the cochlear duct and in the cells lining the nerve pathway [23].
 

Analytical, diagnostic and therapeutic context of Cochlear Duct

References

  1. Temporal pattern of innervation in the developing mouse inner ear: an immunocytochemical study of a 66-kD subunit of mammalian neurofilaments. Galinović-Schwartz, V., Peng, D., Chiu, F.C., Van de Water, T.R. J. Neurosci. Res. (1991) [Pubmed]
  2. Morphologic study of effects of kanamycin on the developing cochlea of the rat. Onejeme, A.U., Khan, K.M. Teratology (1984) [Pubmed]
  3. Effects of endolymphatic-perilymphatic fistula on endolymphatic hydrops in guinea pig. Yazawa, Y., Kitano, H., Suzuki, M., Kitanishi, T., Kitajima, K. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. (2000) [Pubmed]
  4. The rebound phenomenon of glycerol-induced changes in the endolymphatic space. Takeda, T., Takeda, S., Saito, H., Hamada, M., Sawada, S. Acta Otolaryngol. (1999) [Pubmed]
  5. Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Fridberger, A., Flock, A., Ulfendahl, M., Flock, B. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  6. Gbx2 is required for the morphogenesis of the mouse inner ear: a downstream candidate of hindbrain signaling. Lin, Z., Cantos, R., Patente, M., Wu, D.K. Development (2005) [Pubmed]
  7. Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Stevens, C.B., Davies, A.L., Battista, S., Lewis, J.H., Fekete, D.M. Dev. Biol. (2003) [Pubmed]
  8. Retinoic acid signaling is necessary for the development of the organ of Corti. Raz, Y., Kelley, M.W. Dev. Biol. (1999) [Pubmed]
  9. Embryonic expression of the 5-HT3 receptor subunit, 5-HT3R-A, in the rat: an in situ hybridization study. Johnson, D.S., Heinemann, S.F. Mol. Cell. Neurosci. (1995) [Pubmed]
  10. Effects of endolymphatic and perilymphatic application of salicylate in the pigeon. I: Single fiber activity and cochlear potentials. Shehata-Dieler, W.E., Richter, C.P., Dieler, R., Klinke, R. Hear. Res. (1994) [Pubmed]
  11. Effects of adenylate cyclase activation on electrical resistance of scala media. Doi, K., Mori, N., Matsunaga, T. Acta oto-laryngologica. Supplementum. (1993) [Pubmed]
  12. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Peters, K., Ornitz, D., Werner, S., Williams, L. Dev. Biol. (1993) [Pubmed]
  13. Effect of isepamicin dosing scheme on concentration in cochlear tissue. Govaerts, P.J., Claes, J., Van de Heyning, P.H., Derde, M.P., Kaufman, L., Marquet, J.F., De Broe, M.E. Antimicrob. Agents Chemother. (1991) [Pubmed]
  14. Molecular characterization and expression of maternally expressed gene 3 (Meg3/Gtl2) RNA in the mouse inner ear. Manji, S.S., Sørensen, B.S., Klockars, T., Lam, T., Hutchison, W., Dahl, H.H. J. Neurosci. Res. (2006) [Pubmed]
  15. Purinergic regulation of sound transduction and auditory neurotransmission. Housley, G.D., Jagger, D.J., Greenwood, D., Raybould, N.P., Salih, S.G., Järlebark, L.E., Vlajkovic, S.M., Kanjhan, R., Nikolic, P., Muñoz, D.J., Thorne, P.R. Audiol. Neurootol. (2002) [Pubmed]
  16. Bartter syndrome. Hebert, S.C. Curr. Opin. Nephrol. Hypertens. (2003) [Pubmed]
  17. 4-aminopyridine in scala media reversibly alters the cochlear potentials and suppresses electrically evoked oto-acoustic emissions. Kirk, D.L., Yates, G.K. Audiol. Neurootol. (1998) [Pubmed]
  18. Activation of muscarinic cholinergic receptors stimulates inositol phosphates synthesis in the developing avian cochlear duct. Bartolami, S., Mayat, E., Lippe, W.R., Rebillard, G., Pujol, R. Int. J. Dev. Neurosci. (1992) [Pubmed]
  19. A new method for imaging and 3D reconstruction of mammalian cochlea by fluorescent confocal microscopy. Hardie, N.A., MacDonald, G., Rubel, E.W. Brain Res. (2004) [Pubmed]
  20. Changes in endolymph chloride concentration following furosemide injection. Rybak, L.P., Whitworth, C. Hear. Res. (1986) [Pubmed]
  21. Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. Jones, J.M., Montcouquiol, M., Dabdoub, A., Woods, C., Kelley, M.W. J. Neurosci. (2006) [Pubmed]
  22. Cloning and developmental expression of nonmuscle myosin IIA (Myh9) in the mammalian inner ear. Mhatre, A.N., Li, J., Kim, Y., Coling, D.E., Lalwani, A.K. J. Neurosci. Res. (2004) [Pubmed]
  23. Complementary and layered expression of Ephs and ephrins in developing mouse inner ear. Pickles, J.O., Claxton, C., Van Heumen, W.R. J. Comp. Neurol. (2002) [Pubmed]
  24. Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. Radde-Gallwitz, K., Pan, L., Gan, L., Lin, X., Segil, N., Chen, P. J. Comp. Neurol. (2004) [Pubmed]
  25. The ototoxic mechanism of cisplatin. McAlpine, D., Johnstone, B.M. Hear. Res. (1990) [Pubmed]
  26. Localization of secretory phospholipase A2 in mouse cochlear tissues and cultured cells. Zuo, J., Rarey, K.E. Arch. Otolaryngol. Head Neck Surg. (1997) [Pubmed]
  27. Single-cell layer membrane covering the degenerated cochlear duct after perilymphatic perfusion of streptomycin. Kaneko, Y., Terayama, Y., Kawamoto, K., Kasajima, K., Ise, I. Acta Otolaryngol. (1978) [Pubmed]
  28. Delineation of cochlear glycogen by electron microscopy. Duvall, A.J., Hukee, M.J. The Annals of otology, rhinology, and laryngology. (1976) [Pubmed]
  29. Importance of type IV collagen, laminin, and heparan sulfate proteoglycan in the regulation of labyrinthine fluid in the rat cochlear duct. Satoh, H., Kawasaki, K., Kihara, I., Nakano, Y. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery. (1998) [Pubmed]
 
WikiGenes - Universities