Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase.
Muscle proteolysis from catabolic conditions, including chronic kidney disease, requires coordinated activation of both the apoptotic and ATP-ubiquitin-proteasome systems (Ub-P'some), including upregulation of components of the Ub-P'some system. Activation of the apoptotic system is required because caspase-3 initially cleaves myofibrils, yielding substrates for the Ub-P'some system plus a characteristic 14-kD actin fragment. The authors studied insulin deficiency, a model of accelerated muscle atrophy, to understand how regulation of the apoptotic and the Ub-P'some systems could be coordinated. As expected, phosphatidylinositol 3 kinase activity (PI3K) was suppressed in muscle; in addition to decreased insulin, the mechanism includes IRS-1 phosphorylation at serine-307. Caspase-3 activity was also increased, and the authors linked it to a low PI3K- induced activation of the apoptotic system that includes a conformational change in Bax and release of cytochrome C. Coordinated atrogin-1/MAFbx expression is required as a critical factor for Ub-P'some system-dependent muscle proteolysis in diabetes and other catabolic states. The mechanism that regulates atrogin-1/MAFbx expression is unknown. Atrogin-1/MAFbx expression increased when the authors suppressed PI3K activity in muscle cells. The forkhead transcriptional factor, a downstream substrate of PI3K, stimulated atrogin-1/MAFbx promoter transcriptional activity markedly. The authors found in diabetic muscle that mRNA of the forkhead transcriptional factor, its nuclear translocation, and binding to the atrogin-1/MAFbx promoter were increased. When PI3K activity is low, both apoptotic and Ub-P'some pathways are activated coordinately to cause muscle proteolysis. This mechanism could increase muscle atrophy in conditions with impaired insulin responsiveness.[1]References
- Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. Lee, S.W., Dai, G., Hu, Z., Wang, X., Du, J., Mitch, W.E. J. Am. Soc. Nephrol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg