The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Muscular Atrophy

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Muscular Atrophy


Psychiatry related information on Muscular Atrophy


High impact information on Muscular Atrophy

  • Denervation- and tumor-induced muscle loss were substantially reduced and survival rates improved by NF-kappaB inhibition in MISR mice, consistent with a critical role for NF-kappaB in the pathology of muscle wasting and establishing it as an important clinical target for the treatment of muscle atrophy [8].
  • Thus, forkhead factor(s) play a critical role in the development of muscle atrophy, and inhibition of Foxo factors is an attractive approach to combat muscle wasting [9].
  • Pharmacological or genetic inhibition of the IKKbeta/NF-kappaB/MuRF1 pathway reversed muscle atrophy [8].
  • Expression of the E3 ligase MuRF1, a mediator of muscle atrophy, was increased in MIKK mice [8].
  • Expansion of the long (CAG; glutamine)n repeat in the first exon of the X-linked human androgen receptor gene (hAR) causes spinal and bulbar muscular atrophy, frequently in association with mild androgen insensitivity [10].

Chemical compound and disease context of Muscular Atrophy


Biological context of Muscular Atrophy


Anatomical context of Muscular Atrophy


Gene context of Muscular Atrophy


Analytical, diagnostic and therapeutic context of Muscular Atrophy


  1. Triplet repeat mutations in human disease. Caskey, C.T., Pizzuti, A., Fu, Y.H., Fenwick, R.G., Nelson, D.L. Science (1992) [Pubmed]
  2. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Bodine, S.C., Stitt, T.N., Gonzalez, M., Kline, W.O., Stover, G.L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J.C., Glass, D.J., Yancopoulos, G.D. Nat. Cell Biol. (2001) [Pubmed]
  3. Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Takeyama, K., Ito, S., Yamamoto, A., Tanimoto, H., Furutani, T., Kanuka, H., Miura, M., Tabata, T., Kato, S. Neuron (2002) [Pubmed]
  4. Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy. Merry, D.E., Kobayashi, Y., Bailey, C.K., Taye, A.A., Fischbeck, K.H. Hum. Mol. Genet. (1998) [Pubmed]
  5. Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Jarecki, J., Chen, X., Bernardino, A., Coovert, D.D., Whitney, M., Burghes, A., Stack, J., Pollok, B.A. Hum. Mol. Genet. (2005) [Pubmed]
  6. Trinucleotide repeat expansions and human genetic disease. Bates, G., Lehrach, H. Bioessays (1994) [Pubmed]
  7. The growth factor myostatin, a key regulator in skeletal muscle growth and homeostasis. Matsakas, A., Diel, P. International journal of sports medicine. (2005) [Pubmed]
  8. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cai, D., Frantz, J.D., Tawa, N.E., Melendez, P.A., Oh, B.C., Lidov, H.G., Hasselgren, P.O., Frontera, W.R., Lee, J., Glass, D.J., Shoelson, S.E. Cell (2004) [Pubmed]
  9. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S., Lecker, S.H., Goldberg, A.L. Cell (2004) [Pubmed]
  10. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Mhatre, A.N., Trifiro, M.A., Kaufman, M., Kazemi-Esfarjani, P., Figlewicz, D., Rouleau, G., Pinsky, L. Nat. Genet. (1993) [Pubmed]
  11. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Katsuno, M., Adachi, H., Doyu, M., Minamiyama, M., Sang, C., Kobayashi, Y., Inukai, A., Sobue, G. Nat. Med. (2003) [Pubmed]
  12. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Katsuno, M., Adachi, H., Kume, A., Li, M., Nakagomi, Y., Niwa, H., Sang, C., Kobayashi, Y., Doyu, M., Sobue, G. Neuron (2002) [Pubmed]
  13. Inhibitors of prostaglandin synthesis or cathepsin B prevent muscle wasting due to sepsis in the rat. Ruff, R.L., Secrist, D. J. Clin. Invest. (1984) [Pubmed]
  14. Forearm 3-methylhistidine efflux in myotonic dystrophy. Rifai, Z., Kingston, W.J., McCraith, B., Moxley, R.T. Ann. Neurol. (1993) [Pubmed]
  15. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Van Belle, E., Witzenbichler, B., Chen, D., Silver, M., Chang, L., Schwall, R., Isner, J.M. Circulation (1998) [Pubmed]
  16. Tissue-specific somatic mosaicism in spinal and bulbar muscular atrophy is dependent on CAG-repeat length and androgen receptor--gene expression level. Tanaka, F., Reeves, M.F., Ito, Y., Matsumoto, M., Li, M., Miwa, S., Inukai, A., Yamamoto, M., Doyu, M., Yoshida, M., Hashizume, Y., Terao, S., Mitsuma, T., Sobue, G. Am. J. Hum. Genet. (1999) [Pubmed]
  17. Founder effect in spinal and bulbar muscular atrophy (SBMA). Tanaka, F., Doyu, M., Ito, Y., Matsumoto, M., Mitsuma, T., Abe, K., Aoki, M., Itoyama, Y., Fischbeck, K.H., Sobue, G. Hum. Mol. Genet. (1996) [Pubmed]
  18. Neuroprotection by the inhibition of apoptosis. Robertson, G.S., Crocker, S.J., Nicholson, D.W., Schulz, J.B. Brain Pathol. (2000) [Pubmed]
  19. Reduced androgen receptor gene expression with first exon CAG repeat expansion. Choong, C.S., Kemppainen, J.A., Zhou, Z.X., Wilson, E.M. Mol. Endocrinol. (1996) [Pubmed]
  20. Identification of the mouse neuromuscular degeneration gene and mapping of a second site suppressor allele. Cox, G.A., Mahaffey, C.L., Frankel, W.N. Neuron (1998) [Pubmed]
  21. Neurotrophin-3-enhanced nerve regeneration selectively improves recovery of muscle fibers expressing myosin heavy chains 2b. Sterne, G.D., Coulton, G.R., Brown, R.A., Green, C.J., Terenghi, G. J. Cell Biol. (1997) [Pubmed]
  22. Defective satellite cells in congenital myotonic dystrophy. Furling, D., Coiffier, L., Mouly, V., Barbet, J.P., St Guily, J.L., Taneja, K., Gourdon, G., Junien, C., Butler-Browne, G.S. Hum. Mol. Genet. (2001) [Pubmed]
  23. CAG repeat length variation in sperm from a patient with Kennedy's disease. Zhang, L., Fischbeck, K.H., Arnheim, N. Hum. Mol. Genet. (1995) [Pubmed]
  24. Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. Tsujinaka, T., Fujita, J., Ebisui, C., Yano, M., Kominami, E., Suzuki, K., Tanaka, K., Katsume, A., Ohsugi, Y., Shiozaki, H., Monden, M. J. Clin. Invest. (1996) [Pubmed]
  25. The linkage of Kennedy's neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. Hsiao, P.W., Lin, D.L., Nakao, R., Chang, C. J. Biol. Chem. (1999) [Pubmed]
  26. A C619Y mutation in the human androgen receptor causes inactivation and mislocalization of the receptor with concomitant sequestration of SRC-1 (steroid receptor coactivator 1). Nazareth, L.V., Stenoien, D.L., Bingman, W.E., James, A.J., Wu, C., Zhang, Y., Edwards, D.P., Mancini, M., Marcelli, M., Lamb, D.J., Weigel, N.L. Mol. Endocrinol. (1999) [Pubmed]
  27. Homozygosity (E140K) in SCO2 causes delayed infantile onset of cardiomyopathy and neuropathy. Jaksch, M., Horvath, R., Horn, N., Auer, D.P., Macmillan, C., Peters, J., Gerbitz, K.D., Kraegeloh-Mann, I., Muntau, A., Karcagi, V., Kalmanchey, R., Lochmuller, H., Shoubridge, E.A., Freisinger, P. Neurology (2001) [Pubmed]
  28. Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Mohajeri, M.H., Figlewicz, D.A., Bohn, M.C. Hum. Gene Ther. (1999) [Pubmed]
  29. Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ikeda, K., Klinkosz, B., Greene, T., Cedarbaum, J.M., Wong, V., Lindsay, R.M., Mitsumoto, H. Ann. Neurol. (1995) [Pubmed]
  30. Muscle atrophy and bone loss after 90 days' bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Rittweger, J., Frost, H.M., Schiessl, H., Ohshima, H., Alkner, B., Tesch, P., Felsenberg, D. Bone (2005) [Pubmed]
  31. Time course of muscle atrophy and recovery following a phenol-induced nerve block. Bodine-Fowler, S.C., Allsing, S., Botte, M.J. Muscle Nerve (1996) [Pubmed]
  32. Evidence for down-regulation of GAP-43 mRNA in Wobbler mouse spinal motoneurons by corticosterone and a 21-aminosteroid. González Deniselle, M.C., Grillo, C.A., González, S., Roig, P., De Nicola, A.F. Brain Res. (1999) [Pubmed]
  33. Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Appell, H.J., Duarte, J.A., Soares, J.M. International journal of sports medicine. (1997) [Pubmed]
WikiGenes - Universities