Time course of programmed cell death in Ciona intestinalis in relation to mitotic activity and MAPK signaling.
Programmed cell death (PCD) in the ascidian species Ciona intestinalis (Tunicata; Chordata) is investigated from early larvae to juvenile stages, by means of digoxigenin-based terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) technique. At first, PCD in the swimming larva affects trunk mesenchyme and central nervous system (CNS), then it participates extensively to metamorphosis, until it is restricted to developing organs of juveniles. Analysis of patterns of cell death and division in the larval CNS question old models on the genesis of the adult C. intestinalis brain. Upon performing immunochemical and functional assays for mitogen-activated protein kinase (MAPK) kinase kinase-1 (MEKK1), MAPK kinase 1/2 (MEK1/2), c-Jun NH2-terminal kinase (JNK), and dual phosphorylated extracellular regulated kinase 1/2 (dpERK1/2), the neurogenic competence of the larval brain appears to rely on a combinatorial regulation of PCD by the mitogen-activated protein kinase signaling cascade. These results show that, in tunicates, PCD consists of a multistep program implicated in growth and patterning with various roles.[1]References
- Time course of programmed cell death in Ciona intestinalis in relation to mitotic activity and MAPK signaling. Tarallo, R., Sordino, P. Dev. Dyn. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg