The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Ciona intestinalis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ciona intestinalis


High impact information on Ciona intestinalis

  • Here, using the early neural marker Otx as an entry point, we dissected the neural induction pathway in the simple embryos of Ciona intestinalis [3].
  • Cionin, isolated from Ciona intestinalis, a representative of the protochordates that occupy a key position at the transition to vertebrates, so far represents the oldest genuine member of the CCK/gastrin family, dating the emergence of these peptides back to at least 500 million years ago [4].
  • Comparison of the genes encoding these proteins to that of a sister protochordate, Ciona intestinalis, has indicated this rapid and dramatic change is most likely the result of frameshift mutations in the tail of the sperm-specific histone H1 [5].
  • The TRF3 gene is present and expressed in vertebrates, from fish through humans, but absent from the genomes of the urochordate Ciona intestinalis and the lower eukaryotes D. melanogaster and Caenorhabditis elegans [6].
  • Mammalian and chicken I forms of gonadotropin-releasing hormone in the gonads of a protochordate, Ciona intestinalis [7].

Chemical compound and disease context of Ciona intestinalis


Biological context of Ciona intestinalis


Anatomical context of Ciona intestinalis


Associations of Ciona intestinalis with chemical compounds


Gene context of Ciona intestinalis


Analytical, diagnostic and therapeutic context of Ciona intestinalis


  1. cDNA deduced procionin. Structure and expression in protochordates resemble that of procholecystokinin in mammals. Monstein, H.J., Thorup, J.U., Folkesson, R., Johnsen, A.H., Rehfeld, J.F. FEBS Lett. (1993) [Pubmed]
  2. Toxicity of Hg, Cu, Cd, and Cr on early developmental stages of Ciona intestinalis (Chordata, Ascidiacea) with potential application in marine water quality assessment. Bellas, J., Vázquez, E., Beiras, R. Water Res. (2001) [Pubmed]
  3. Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Bertrand, V., Hudson, C., Caillol, D., Popovici, C., Lemaire, P. Cell (2003) [Pubmed]
  4. Phylogeny of the cholecystokinin/gastrin family. Johnsen, A.H. Frontiers in neuroendocrinology. (1998) [Pubmed]
  5. Histone H1 and the origin of protamines. Lewis, J.D., Saperas, N., Song, Y., Zamora, M.J., Chiva, M., Ausió, J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  6. TRF3, a TATA-box-binding protein-related factor, is vertebrate-specific and widely expressed. Persengiev, S.P., Zhu, X., Dixit, B.L., Maston, G.A., Kittler, E.L., Green, M.R. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  7. Mammalian and chicken I forms of gonadotropin-releasing hormone in the gonads of a protochordate, Ciona intestinalis. Di Fiore, M.M., Rastogi, R.K., Ceciliani, F., Messi, E., Botte, V., Botte, L., Pinelli, C., D'Aniello, B., D'Aniello, A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  8. Localization of somatostatin-, substance P- and calcitonin-like immunoreactivity in the neural ganglion of Ciona intestinalis L. (Ascidiaceae). Fritsch, H.A., Van Noorden, S., Pearse, A.G. Cell Tissue Res. (1979) [Pubmed]
  9. Methionine-enkephalin-like immunoreactivity in the nervous ganglion and the ovary of a protochordate, Ciona intestinalis. Georges, D., Dubois, M.P. Cell Tissue Res. (1984) [Pubmed]
  10. GnRH-immunoreactive neuronal system in the presumptive ancestral chordate, Ciona intestinalis (Ascidian). Tsutsui, H., Yamamoto, N., Ito, H., Oka, Y. Gen. Comp. Endocrinol. (1998) [Pubmed]
  11. Sublethal effects of trace metals (Cd, Cr, Cu, Hg) on embryogenesis and larval settlement of the ascidian Ciona intestinalis. Bellas, J., Beiras, R., Vázquez, E. Arch. Environ. Contam. Toxicol. (2004) [Pubmed]
  12. Toxicity assessment of the antifouling compound zinc pyrithione using early developmental stages of the ascidian Ciona intestinalis. Bellas, J. Biofouling (2005) [Pubmed]
  13. Tail regression in Ciona intestinalis (Prochordate) involves a Caspase-dependent apoptosis event associated with ERK activation. Chambon, J.P., Soule, J., Pomies, P., Fort, P., Sahuquet, A., Alexandre, D., Mangeat, P.H., Baghdiguian, S. Development (2002) [Pubmed]
  14. A zinc finger transcription factor, ZicL, is a direct activator of Brachyury in the notochord specification of Ciona intestinalis. Yagi, K., Satou, Y., Satoh, N. Development (2004) [Pubmed]
  15. Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Ogasawara, M., Wada, H., Peters, H., Satoh, N. Development (1999) [Pubmed]
  16. Regulatory elements controlling Ci-msxb tissue-specific expression during Ciona intestinalis embryonic development. Russo, M.T., Donizetti, A., Locascio, A., D'Aniello, S., Amoroso, A., Aniello, F., Fucci, L., Branno, M. Dev. Biol. (2004) [Pubmed]
  17. Membrane hyperpolarization by sperm-activating and -attracting factor increases cAMP level and activates sperm motility in the ascidian Ciona intestinalis. Izumi, H., Márián, T., Inaba, K., Oka, Y., Morisawa, M. Dev. Biol. (1999) [Pubmed]
  18. The hsp70 protein is involved in the acquisition of gamete self-sterility in the ascidian Ciona intestinalis. Marino, R., Pinto, M.R., Cotelli, F., Lamia, C.L., De Santis, R. Development (1998) [Pubmed]
  19. Differentiation of tropomyosin-containing myofibrils in cleavage-arrested ascidian zygotes expressing acetylcholinesterase. Crowther, R.J., Meedel, T.H., Whittaker, J.R. Development (1990) [Pubmed]
  20. Molecular characterization of radial spoke subcomplex containing radial spoke protein 3 and heat shock protein 40 in sperm flagella of the ascidian Ciona intestinalis. Satouh, Y., Padma, P., Toda, T., Satoh, N., Ide, H., Inaba, K. Mol. Biol. Cell (2005) [Pubmed]
  21. Ci-Tbx6b and Ci-Tbx6c are key mediators of the maternal effect gene Ci-macho1 in muscle cell differentiation in Ciona intestinalis embryos. Yagi, K., Takatori, N., Satou, Y., Satoh, N. Dev. Biol. (2005) [Pubmed]
  22. Tunicates have unusual nuclear lamins with a large deletion in the carboxyterminal tail domain. Riemer, D., Wang, J., Zimek, A., Swalla, B.J., Weber, K. Gene (2000) [Pubmed]
  23. Development of translationally active mRNA for larval muscle acetylcholinesterase during ascidian embryogenesis. Meedel, T.H., Whittaker, J.R. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  24. Ciona intestinalis nuclear receptor 1: a member of steroid/thyroid hormone receptor family. Carosa, E., Fanelli, A., Ulisse, S., Di Lauro, R., Rall, J.E., Jannini, E.A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  25. The single MyoD family gene of Ciona intestinalis encodes two differentially expressed proteins: implications for the evolution of chordate muscle gene regulation. Meedel, T.H., Farmer, S.C., Lee, J.J. Development (1997) [Pubmed]
  26. Identification of a novel leucine-rich repeat protein as a component of flagellar radial spoke in the Ascidian Ciona intestinalis. Padma, P., Satouh, Y., Wakabayashi, K., Hozumi, A., Ushimaru, Y., Kamiya, R., Inaba, K. Mol. Biol. Cell (2003) [Pubmed]
  27. The evolutionary origin of cardiac chambers. Simões-Costa, M.S., Vasconcelos, M., Sampaio, A.C., Cravo, R.M., Linhares, V.L., Hochgreb, T., Yan, C.Y., Davidson, B., Xavier-Neto, J. Dev. Biol. (2005) [Pubmed]
  28. Functional phylogeny relates LET-756 to fibroblast growth factor 9. Popovici, C., Conchonaud, F., Birnbaum, D., Roubin, R. J. Biol. Chem. (2004) [Pubmed]
  29. A modular cis-regulatory system controls isoform-specific pitx expression in ascidian stomodaeum. Christiaen, L., Bourrat, F., Joly, J.S. Dev. Biol. (2005) [Pubmed]
  30. Ci-IPF1, the pancreatic homeodomain transcription factor, is expressed in neural cells of Ciona intestinalis larva. Corrado, M., Aniello, F., Fucci, L., Branno, M. Mech. Dev. (2001) [Pubmed]
  31. Ci-GATAa, a GATA-class gene from the ascidian Ciona intestinalis: isolation and developmental expression. D'Ambrosio, P., Fanelli, A., Pischetola, M., Spagnuolo, A. Dev. Dyn. (2003) [Pubmed]
  32. Identification and phylogenetic analyses of the protein arginine methyltransferase gene family in fish and ascidians. Hung, C.M., Li, C. Gene (2004) [Pubmed]
  33. Oligonucleotide-based microarray analysis of retinoic acid target genes in the protochordate, Ciona intestinalis. Ishibashi, T., Usami, T., Fujie, M., Azumi, K., Satoh, N., Fujiwara, S. Dev. Dyn. (2005) [Pubmed]
  34. Molecular cloning and characterization of a thioredoxin/nucleoside diphosphate kinase related dynein intermediate chain from the ascidian, Ciona intestinalis. Padma, P., Hozumi, A., Ogawa, K., Inaba, K. Gene (2001) [Pubmed]
  35. Cloning and evolutionary analysis of msh-like homeobox genes from mouse, zebrafish and ascidian. Holland, P.W. Gene (1991) [Pubmed]
  36. Electron-microscopic immunocytochemistry of 5-hydroxytryptamine in the ascidian endostyle. Nilsson, O., Fredriksson, G., Ofverholm, T., Ericson, L.E. Cell Tissue Res. (1988) [Pubmed]
  37. Distribution of gonadotropin-releasing hormone (GnRH) by in situ hybridization in the tunicate Ciona intestinalis. Kavanaugh, S.I., Root, A.R., Sower, S.A. Gen. Comp. Endocrinol. (2005) [Pubmed]
WikiGenes - Universities