Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte.
Haploid spores of plants divide mitotically to form multicellular gametophytes. The female spore (megaspore) of most flowering plants develops by means of a well-defined programme into the mature megagametophyte consisting of the egg apparatus and a central cell. We investigated the role of the Arabidopsis retinoblastoma protein homologue and its function as a negative regulator of cell proliferation during megagametophyte development. Here we show that three mutant alleles of the gene for the Arabidopsis retinoblastoma-related protein, RBR1 (ref. 4), are gametophytic lethal. In heterozygous plants 50% of the ovules are aborted when the mutant allele is maternally inherited. The mature unfertilized mutant megagametophyte fails to arrest mitosis and undergoes excessive nuclear proliferation in the embryo sac. Supernumerary nuclei are present at the micropylar end of the megagametophyte, which develops into the egg apparatus and central cell. The central cell nucleus, which gives rise to the endosperm after fertilization, initiates autonomous endosperm development reminiscent of fertilization-independent seed (fis) mutants. Thus, RBR1 has a novel and previously unrecognized function in cell cycle control during gametogenesis and in the repression of autonomous endosperm development.[1]References
- Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Ebel, C., Mariconti, L., Gruissem, W. Nature (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg