The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Adenylyl cyclase type VI gene transfer reduces phospholamban expression in cardiac myocytes via activating transcription factor 3.

Cardiac-directed expression of adenylyl cyclase type VI (AC(VI)) increases stimulated cAMP production, improves heart function, and increases survival in cardiomyopathy. In contrast, pharmacological agents that increase intracellular levels of cAMP have detrimental effects on cardiac function and survival. We wondered whether effects that are independent of cAMP might be responsible for these salutary outcomes associated with AC(VI) expression. We therefore conducted a series of experiments focused on how gene transcription is influenced by AC(VI) in cultured neonatal rat cardiac myocytes, with a particular focus on genes that might influence cardiac function. We found that overexpression of AC(VI) down-regulated mRNA and protein expression of phospholamban, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase. We determined that the cAMP-responsive-like element in the phospholamban (PLB) promoter was critical for down-regulation by AC(VI). Overexpression of AC(VI) did not alter the expression of CREB, CREM, ATF1, ATF2, or ATF4 proteins. In contrast, overexpression of AC(VI) increased expression of ATF3 protein, a suppressor of transcription. Following AC(VI) gene transfer, when cardiac myocytes were stimulated with isoproterenol or NKH477, a water-soluble forskolin analog that directly stimulates AC, expression of ATF3 protein was increased even more, which correlated with reduced expression of PLB. We then showed that AC(VI)-induced ATF3 protein binds to the cAMP-responsive-like element on the PLB promoter and that overexpression of ATF3 in cardiac myocytes inhibits PLB promoter activity. These findings indicate that AC(VI) has effects on gene transcription that are not directly dependent on cAMP generation.[1]

References

  1. Adenylyl cyclase type VI gene transfer reduces phospholamban expression in cardiac myocytes via activating transcription factor 3. Gao, M.H., Tang, T., Guo, T., Sun, S.Q., Feramisco, J.R., Hammond, H.K. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities