The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The A3 adenosine receptor agonist 2-Cl-IB-MECA facilitates epileptiform discharges in the CA3 area of immature rat hippocampal slices.

The effects of the A(3) adenosine receptor agonist 2-Cl-IB-MECA were tested on epileptiform field potentials recorded in the CA3 area of postnatal days 10-20 immature hippocampal slices, during perfusion with the GABA(A) receptor antagonist bicuculline (10 microM). Evoked potentials: 2-Cl-IB-MECA (1-50 microM, n = 17) had consistently excitatory effects, blocked by the A(3) receptor antagonist MRS 1220 (1 microM, n = 7), but not occluded in the presence of the A(1) antagonist DPCPX (1 microM, n = 12) or the A(2A) antagonist ZM-241385 (0.1 microM, n = 12). 2-Cl-IB-MECA reversed the inhibitory effects (n = 5) of the adenosine uptake blocker nitrobenzylthioinosine (NBTI, 50 microM), but did not increase its excitatory effects (n = 19). Spontaneous discharges: 2-Cl-IB-MECA (1 microM) induced them or increased their frequency in 14/30 slices, an effect reversed by MRS 1220 (n = 3), and observed also following pre-perfusion with DPCPX (n = 11), ZM-241385 (n = 11) or both (n = 10). In the presence of the A(1) antagonist DPCPX, NBTI increased the frequency of spontaneous discharges, an effect partially reversed by MRS 1220 (n = 8), thus suggesting that a rise in endogenous adenosine during disinhibition may activate A(3) receptors. In conclusion, these findings suggest strongly that activation of A(3) receptors, following a rise in endogenous adenosine (i.e. during seizures, hypoxia), facilitates excitation, thus limiting the known inhibitory and/or neuroprotective effects of adenosine in immature brain.[1]

References

 
WikiGenes - Universities