The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

DPCPX     8-cyclopentyl-1,3-dipropyl- 7H-purine-2,6...

Synonyms: Lopac-C-101, CHEMBL183, Tocris-0439, GNF-PF-2224, SureCN382422, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Tocris-0439


Psychiatry related information on Tocris-0439


High impact information on Tocris-0439


Chemical compound and disease context of Tocris-0439

  • 4. In these same studies, before administration of DPCPX, or ZM 241385, hypoxia had no effect on the venous-arterial difference for K+ ([K+]v-a), whereas after administration of either antagonist, hypoxia significantly reduced [K+]v-a suggesting an increase in hypoxia-induced K+ uptake, or a reduction in K+ efflux [11].
  • Adenosine, CCPA, APNEA, BNECA and DPCPX each appear to be selective for the A1 adenosine receptor subtype in isolated rabbit cardiomyocytes [12].
  • 4. NECA, CPA and APNEA potentiated electrically-evoked contractions in preparations of cauda epididymis (pEC50 values 7.49+/-0.62, 7.65+/-0.74 and 5.84+/-0.86, respectively), the response to CPA was competitively antagonized by DPCPX (100 nM) with an apparent pK(B) value of 7.64+/-0.64 [13].
  • We studied the effects of 2-CA, a specific A(1) agonist (2-chloro-N(6)-cyclopentyladenosine, CCPA), and a specific A(1) antagonist (8-cyclopentyl-1,3-dipropylxanthine, DPCPX) on motor task and Morris water maze (MWM) performance, and histopathology (contusion volume, hippocampal cell counts) after controlled cortical impact (CCI) in mice [14].
  • Contusion volume tended to be attenuated by 2-CA (P=0.08 versus saline) and increased after either DMSO or DPCPX (P<0.05 versus all groups) [14].

Biological context of Tocris-0439

  • Inhibition of specific L-[3H]PIA binding by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1-300 nM) performed with the same preparations revealed two DPCPX binding sites with Ki values of 0.29 and 13.5 nM, respectively [15].
  • DPCPX also attenuated the decrease in arterial blood pressure (ABP) and increase in FVC evoked by acute hypoxia in N and 1-7CH rats [4].
  • In the presence of 8SPT--at concentrations (10-50 microM) which block both A1 and A2 receptors--the same tetani consistently evoked LTP of population spikes but not of excitatory postsynaptic potentials (EPSPs), whereas DPCPX (50 nM), which blocks only A1 receptors, facilitated LTP of both EPSPs and population spikes [16].
  • The generation of the burst discharges was independent of the membrane potential, and the amplitude of the slow component of the paroxysmal depolarization shift increased with hyperpolarization, indicating that the 1,3-dipropyl-8-cyclopentylxanthine-induced bursts were synaptically mediated events [17].
  • However, the suggestion that PD81,723 acts as an allosteric inhibitor of DPCPX (1,3-dipropyl-8-cyclopentylxanthine) binding cannot be confirmed by kinetic studies, since PD81,723 does not seem to affect the dissociation kinetics of [(3)H]DPCPX [18].

Anatomical context of Tocris-0439

  • The inhibitory effect of CADO (5 microM) on [3H]ACh release was prevented by the A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM) in the three hippocampal areas and was converted in an excitatory effect in the CA3 and dentate gyrus areas [19].
  • Further, in freshly excised rat aorta, adenosine evoked a release of NO, detected with an NO-sensitive electrode, that was abolished by NO synthesis inhibition, or endothelium removal, and reduced by ~50 % by the A(1) antagonist DPCPX, the remainder being attenuated by the A(2A) antagonist ZM241385 [20].
  • Rats pretreated with R-PIA had a decreased number of apoptotic cells in the hippocampus, whereas pretreatment with DPCPX did not modify the hippocampal damage [21].
  • At the concentrations used in electrophysiological experiments (30-100 nM), 1,3-dipropyl-8-cyclopentylxanthine displayed only a negligible inhibitory action on total cyclic nucleotide phosphodiesterase activity measured by means of a radiochemical assay in a homogenate of the rat cerebral cortex [17].
  • Consistent with the endogenous role of adenosine on network activity, DPCPX per se increased the frequency of GDPs, interictal bursts, and spontaneous glutamatergic synaptic events recorded from GABAergic interneurons [22].

Associations of Tocris-0439 with other chemical compounds


Gene context of Tocris-0439


Analytical, diagnostic and therapeutic context of Tocris-0439


  1. A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. Lee, H.T., Gallos, G., Nasr, S.H., Emala, C.W. J. Am. Soc. Nephrol. (2004) [Pubmed]
  2. Adenosine A1 antagonism increases specific synaptic forms of glutamate release during anoxia, revealing a unique source of excitation. Katchman, A.N., Hershkowitz, N. Hippocampus. (1996) [Pubmed]
  3. Lack of a pharmacologic interaction between ATP-sensitive potassium channels and adenosine A1 receptors in ischemic rat hearts. Grover, G.J., Baird, A.J., Sleph, P.G. Cardiovasc. Res. (1996) [Pubmed]
  4. The role of adenosine in the early respiratory and cardiovascular changes evoked by chronic hypoxia in the rat. Walsh, M.P., Marshall, J.M. J. Physiol. (Lond.) (2006) [Pubmed]
  5. Adenosine A1 receptors modulate high voltage-activated Ca2+ currents and motor pattern generation in the xenopus embryo. Brown, P., Dale, N. J. Physiol. (Lond.) (2000) [Pubmed]
  6. Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. Inscho, E.W., Cook, A.K., Imig, J.D., Vial, C., Evans, R.J. J. Clin. Invest. (2003) [Pubmed]
  7. Dose-dependent activation of antiapoptotic and proapoptotic pathways by ethanol treatment in human vascular endothelial cells: differential involvement of adenosine. Liu, J., Tian, Z., Gao, B., Kunos, G. J. Biol. Chem. (2002) [Pubmed]
  8. NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function. Brennan, A.M., Connor, J.A., Shuttleworth, C.W. J. Cereb. Blood Flow Metab. (2006) [Pubmed]
  9. 2-chloroadenosine stimulates granule exocytosis from mouse natural killer cells: evidence for signal transduction through a novel extracellular receptor. Williams, B.A., Blay, J., Hoskin, D.W. Exp. Cell Res. (1997) [Pubmed]
  10. Development of pharmacological sensitivity to adenosine analogs in embryonic chick heart: role of A1 adenosine receptors and adenylyl cyclase inhibition. Blair, T.A., Parenti, M., Murray, T.F. Mol. Pharmacol. (1989) [Pubmed]
  11. Adenosine receptor subtypes and vasodilatation in rat skeletal muscle during systemic hypoxia: a role for A1 receptors. Bryan, P.T., Marshall, J.M. J. Physiol. (Lond.) (1999) [Pubmed]
  12. Concentration-response relationships for adenosine agonists during preconditioning of rabbit cardiomyocytes. Rice, P.J., Armstrong, S.C., Ganote, C.E. J. Mol. Cell. Cardiol. (1996) [Pubmed]
  13. A1 adenosine receptor modulation of electrically-evoked contractions in the bisected vas deferens and cauda epididymis of the guinea-pig. Haynes, J.M., Alexander, S.P., Hill, S.J. Br. J. Pharmacol. (1998) [Pubmed]
  14. Administration of adenosine receptor agonists or antagonists after controlled cortical impact in mice: effects on function and histopathology. Varma, M.R., Dixon, C.E., Jackson, E.K., Peters, G.W., Melick, J.A., Griffith, R.P., Vagni, V.A., Clark, R.S., Jenkins, L.W., Kochanek, P.M. Brain Res. (2002) [Pubmed]
  15. Solubilized rat brain adenosine receptors have two high-affinity binding sites for 1,3-dipropyl-8-cyclopentylxanthine. Oliveira, J.C., Sebastião, A.M., Ribeiro, J.A. J. Neurochem. (1991) [Pubmed]
  16. Adenosine antagonists have differential effects on induction of long-term potentiation in hippocampal slices. Forghani, R., Krnjević, K. Hippocampus. (1995) [Pubmed]
  17. Disinhibition of hippocampal CA3 neurons induced by suppression of an adenosine A1 receptor-mediated inhibitory tonus: pre- and postsynaptic components. Alzheimer, C., Sutor, B., ten Bruggencate, G. Neuroscience (1993) [Pubmed]
  18. Differential effects of the allosteric enhancer (2-amino-4,5-dimethyl-trienyl)[3-trifluoromethyl) phenyl]methanone (PD81,723) on agonist and antagonist binding and function at the human wild-type and a mutant (T277A) adenosine A1 receptor. Kourounakis, A., Visser, C., de Groote, M., IJzerman, A.P. Biochem. Pharmacol. (2001) [Pubmed]
  19. Excitatory and inhibitory effects of A1 and A2A adenosine receptor activation on the electrically evoked [3H]acetylcholine release from different areas of the rat hippocampus. Cunha, R.A., Milusheva, E., Vizi, E.S., Ribeiro, J.A., Sebastião, A.M. J. Neurochem. (1994) [Pubmed]
  20. Interactions of adenosine, prostaglandins and nitric oxide in hypoxia-induced vasodilatation: in vivo and in vitro studies. Ray, C.J., Abbas, M.R., Coney, A.M., Marshall, J.M. J. Physiol. (Lond.) (2002) [Pubmed]
  21. Modulation of seizures and synaptic plasticity by adenosinergic receptors in an experimental model of temporal lobe epilepsy induced by pilocarpine in rats. Vianna, E.P., Ferreira, A.T., Doná, F., Cavalheiro, E.A., da Silva Fernandes, M.J. Epilepsia (2005) [Pubmed]
  22. Adenosine down-regulates giant depolarizing potentials in the developing rat hippocampus by exerting a negative control on glutamatergic inputs. Safiulina, V.F., Kasyanov, A.M., Giniatullin, R., Cherubini, E. J. Neurophysiol. (2005) [Pubmed]
  23. Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones. Shen, K.Z., Johnson, S.W. J. Physiol. (Lond.) (1997) [Pubmed]
  24. Adenosine stimulates nitric oxide synthesis in vascular smooth muscle cells. Ikeda, U., Kurosaki, K., Ohya, K., Shimada, K. Cardiovasc. Res. (1997) [Pubmed]
  25. Xanthine effects on renal proximal tubular function and cyclic AMP metabolism. Coulson, R., Scheinman, S.J. J. Pharmacol. Exp. Ther. (1989) [Pubmed]
  26. Adenosine induces cyclic-AMP formation and inhibits endothelin-1 production/secretion in guinea-pig tracheal epithelial cells through A(2B) adenosine receptors. Pelletier, S., Dubé, J., Villeneuve, A., Gobeil, F., Bernier, S.G., Battistini, B., Guillemette, G., Sirois, P. Br. J. Pharmacol. (2000) [Pubmed]
  27. DeltaPKC-mediated activation of epsilonPKC in ethanol-induced cardiac protection from ischemia. Inagaki, K., Mochly-Rosen, D. J. Mol. Cell. Cardiol. (2005) [Pubmed]
  28. A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Lee, H.T., Xu, H., Nasr, S.H., Schnermann, J., Emala, C.W. Am. J. Physiol. Renal Physiol. (2004) [Pubmed]
  29. Study of an adenosine A1 receptor agonist on trigeminally evoked dural blood vessel dilation in the anaesthetized rat. Honey, A.C., Bland-Ward, P.A., Connor, H.E., Feniuk, W., Humphrey, P.P. Cephalalgia : an international journal of headache. (2002) [Pubmed]
  30. Autocrine activation of adenosine A1 receptors blocks D1A but not D1B dopamine receptor desensitization. Le Crom, S., Prou, D., Vernier, P. J. Neurochem. (2002) [Pubmed]
  31. Modulation of [3H]acetylcholine release from cultured amacrine-like neurons by adenosine A1 receptors. Santos, P.F., Santos, M.S., Carvalho, A.P., Duarte, C.B. J. Neurochem. (1998) [Pubmed]
  32. Phasic and tonic attenuation of EPSPs by inward rectifier K+ channels in rat hippocampal pyramidal cells. Takigawa, T., Alzheimer, C. J. Physiol. (Lond.) (2002) [Pubmed]
  33. Relationship of blood flow effects of adenosine during reperfusion to recovery of ventricular function after hypothermic ischemia in neonatal lambs. Nomura, F., Forbess, J.M., Hiramatsu, T., Mayer, J.E. Circulation (1997) [Pubmed]
  34. In vivo co-ordinated interactions between inhibitory systems to control glutamate-mediated hippocampal excitability. Rodríguez, M.J., Robledo, P., Andrade, C., Mahy, N. J. Neurochem. (2005) [Pubmed]
  35. In vivo effects of diadenosine polyphosphates on rat renal microcirculation. Gabriëls, G., Endlich, K., Rahn, K.H., Schlatter, E., Steinhausen, M. Kidney Int. (2000) [Pubmed]
  36. Cardiovascular responses to microinjection of ATP into the nucleus tractus solitarii of awake rats. de Paula, P.M., Antunes, V.R., Bonagamba, L.G., Machado, B.H. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2004) [Pubmed]
  37. Potential use of DPCPX as probe for in vivo localization of brain A1 adenosine receptors. Bisserbe, J.C., Pascal, O., Deckert, J., Mazière, B. Brain Res. (1992) [Pubmed]
WikiGenes - Universities