The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Reverse two-hybrid screening identifies residues of JNK required for interaction with the kinase interaction motif of JNK-interacting protein-1.

The development of specific inhibitors for the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein kinases (MAPKs) has been a recent research focus because of the association of JNK with cell death in conditions such as stroke and neurodegeneration. We have demonstrated previously the presence of critical inhibitory residues within an 11-mer peptide (TI-JIP) based on the sequence of JNK-interacting protein-1 (JIP-1). However, the corresponding region of JNK bound by this JIP-1-based peptide was unknown. To identify this region, we used a novel reverse two-hybrid approach with TI-JIP as bait. We screened a library of JNK1 mutants that had been generated by random PCR mutagenesis and found three mutants of JNK1 that failed to interact with TI-JIP. The mutations in JNK1 were L131R, R309W, and Y320H. Of these mutated residues, Leu-131 and Tyr-320 were located on a common face of the JNK protein close to other residues implicated previously in the interactions of MAPKs with substrates, phosphatases, and scaffolds. To test whether these JNK1 mutants were thus affected in their regulation, we evaluated their activation in mammalian cells in response to hyperosmolarity or cotransfection with a constitutively active upstream kinase or their direct phosphorylation by either MAPK kinase (MKK)4 or MKK7. In each situation, all three JNK mutants were not activated or phosphorylated to the same level as wild-type JNK. Therefore, the results of our unbiased reverse two-hybrid screening approach have identified residues of JNK responsible for binding JIP-1-based peptides as well as MKK4 or MKK7.[1]


WikiGenes - Universities