The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Heparan sulfate structure in mice with genetically modified heparan sulfate production.

Using a high throughput heparan sulfate (HS) isolation and characterization protocol, we have analyzed HS structure in several tissues from mice/mouse embryos deficient in HS biosynthesis enzymes (N-deacetylase/N-sulfotransferase (NDST)-1, NDST-2, and C5-epimerase, respectively) and in mice lacking syndecan-1. The results have given us new information regarding HS biosynthesis with implications on the role of HS in embryonic development. Our main conclusions are as follows. 1) The HS content, disaccharide composition, and the overall degree of N- and O-sulfation as well as domain organization are characteristic for each individual mouse tissue. 2) Removal of a key biosynthesis enzyme (NDST-1 or C5-epimerase) results in similar structural alterations in all of the tissues analyzed. 3) Essentially no variation in HS tissue structure is detected when individuals of the same genotype are compared. 4) NDST-2, although generally expressed, does not contribute significantly to tissue-specific HS structures. 5) No change in HS structure could be detected in syndecan-1-deficient mice.[1]


  1. Heparan sulfate structure in mice with genetically modified heparan sulfate production. Ledin, J., Staatz, W., Li, J.P., Götte, M., Selleck, S., Kjellén, L., Spillmann, D. J. Biol. Chem. (2004) [Pubmed]
WikiGenes - Universities