The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Emi1-mediated M-phase arrest in Xenopus eggs is distinct from cytostatic factor arrest.

Oocytes of most vertebrates arrest at metaphase of the second meiosis (meta-II) to await fertilization, thus preventing parthenogenetic activation. This arrest is caused by a cytoplasmic activity called cytostatic factor (CSF), which was first identified in the frog Rana pipiens oocyte >30 years ago. CSF arrest is executed by maintaining the activity of cyclin B-Cdc2 at elevated levels largely through prevention of cyclin B destruction. Although CSF arrest is established by the Mos-mitogen-activated protein kinase pathway and is released by the Ca-calmodulin kinase II pathway, it remains unclear precisely how cyclin B destruction is regulated. Recently, an early mitotic inhibitor, Emi1, was reported to be a critical component of CSF. This report has been expected to provide a final resolution to the CSF problem because Emi1 inhibits the anaphase-promoting complex/cyclosome, a ubiquitin ligase for cyclin B destruction, through sequestration of Cdc20, an activator for the anaphase-promoting complex/cyclosome. In mitotic cycles, however, Emi1 is destroyed in every pro-metaphase, and accordingly, it is unclear why Emi1 should be required for CSF activity, which is seen only in meta-II. Here, we show that Emi1 is absent in unfertilized mature Xenopus eggs and that exogenous Emi1 is destroyed in meta-II and mitotic metaphase. The expression of Emi1 in oocytes hinders meiotic progression. Although both Emi1 and Mos can inhibit progression through M phase, the Emi1- mediated arrest does not require mitogen-activated protein kinase activity and is not released by Ca. Together, our results indicate that Emi1 is unlikely to be a component of CSF.[1]

References

  1. Emi1-mediated M-phase arrest in Xenopus eggs is distinct from cytostatic factor arrest. Ohsumi, K., Koyanagi, A., Yamamoto, T.M., Gotoh, T., Kishimoto, T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
 
WikiGenes - Universities