The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ranidae

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ranidae

  • Substance P-containing ganglion cells become progressively less detectable during retinotectal development in the frog Rana pipiens [1].
  • The ability of a number of calcium antagonistic drugs including nitrendipine, D600, and D890 to block contractures in single skinned (sarcolemma removed) muscle fibers of the frog Rana pipiens has been characterized [2].
  • Recent data obtained from Rana temporaria sartorius muscles during an isometric tetanus indicate that the time-course of phosphocreatine (PC) splitting cannot account for the total energy (heat + work) liberation (Gilbert et al [3].
  • OBJECTIVE: To study the in vitro activity of temporin A, a basic, highly hydrophobic, antimicrobial peptide amide derived from the skin of the European red frog Rana temporaria, alone and in combination with co-amoxiclav, imipenem, ciprofloxacin, linezolid and vancomycin, against 42 nosocomial isolates of Enterococcus faecalis [4].
  • Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs (Rana catesbeiana). I. Morphological responses of lungs, skin and gills [5].
 

Psychiatry related information on Ranidae

 

High impact information on Ranidae

  • We recently purified a kainate-binding protein (KBP) from frog (Rana pipiens berlandieri) brain by domoic acid (a high-affinity kainate analogue) affinity chromatography, and showed that the kainate-binding activity was associated with a protein of relative molecular mass 48,000 (Mr 48 K) [8].
  • We recorded neuronal activities of sensory neurones from the bullfrog (Rana catesbiana), using the suction pipette method and a 'concentration clamp' technique to apply gamma-aminobutyric acid (GABA) to the cell [9].
  • Prolactin receptors in Rana catesbeiana during development and metamorphosis [10].
  • Thyrotropin-releasing hormone: abundance in the skin of the frog, Rana pipiens [11].
  • BACKGROUND: Onconase, a protein isolated from oocytes and early embryos of the frog Rana pipiens, shares extensive homology with bovine pancreatic ribonuclease (RNase A) and possesses similar enzyme activity [12].
 

Chemical compound and disease context of Ranidae

 

Biological context of Ranidae

 

Anatomical context of Ranidae

 

Associations of Ranidae with chemical compounds

  • Retinas of dark adapted or light exposed Rana pipiens were critical-point-dried and RIS and ROS were split and coated with ultrathin metal films of niobium and chromium--or decorated with gold--and imaged in a new SE-I imaging mode [28].
  • Actin has been localized in Rana pipiens retinas that were fixed and embedded in aldehyde cross-linked BSA [29].
  • In the present study, we have investigated the distribution and bioactivity of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) (EC 1.1.1.62; a key enzyme that is required for the formation of testosterone and estradiol) in the brain of the male frog Rana ridibunda [30].
  • Reversible dissociation of a carbamoyl phosphate synthase-aspartate transcarbamoylase-dihydroorotase complex from ovarian eggs of Rana catesbeiana: effect of uridine triphosphate and other modifiers [31].
  • The primary structure of the peptide was established as Tyr-Pro-Pro-Lys-Pro-Glu-Ser-Pro-Gly-Glu10-Asp-Ala-Ser-Pro-Glu-Glu- Met-Asn- Lys-Tyr20-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu30-Val-Thr- Arg-Gln-Arg-Tyr-NH2 . This unusual peptide, named skin peptide tyrosine-tyrosine (SPYY), exhibits 94% similarity with PYY from the frog Rana ridibunda [32].
 

Gene context of Ranidae

  • The amidated decapeptide neuromedin B (NMB) is the mammalian homolog of the amphibian bombesin-like peptide ranatensin. cDNAs encoding human neuromedin B and amphibian ranatensin were isolated from human hypothalamic and Rana pipiens skin libraries, respectively [33].
  • An amphibian VIP/PACAP receptor complementary DNA (cDNA) has been cloned and characterized from a frog (Rana ridibunda) pituitary cDNA library [34].
  • Thus, the D-p-iodophenylalanine7-containing analogue Ac-Nle4-c[Asp5,D-Phe(pI)7,Lys10]alpha-MSH-(4-10)-NH2 is a potent antagonist (pA2 = 10.3) in the classical frog skin (Rana pipiens) assay (MC1-R), as is the D-2'-naphthylalanine7 (D-Nal(2)7)-containing analogue Ac-Nle4-c[Asp5,D-Nal(2)7,Lys10]alpha-MSH-(4-10)-NH2 (pA2 > 10.3) [35].
  • The activities and structures of certain L198 variants of human carbonic anhydrase II (CAII) have been reported recently [Krebs, J. F., Rana, F., Dluhy, R. A., & Fierke, C. A. (1993) Biochemistry 32, 4496-4505; Nair, S. K., & Christianson, D. W. (1993) Biochemistry 32, 4506-4514] [36].
  • Ribonuclease activity of sialic acid-binding lectin from Rana catesbeiana eggs [37].
 

Analytical, diagnostic and therapeutic context of Ranidae

References

  1. Substance P-containing ganglion cells become progressively less detectable during retinotectal development in the frog Rana pipiens. Kuljis, R.O., Karten, H.J. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  2. Block of contracture in skinned frog skeletal muscle fibers by calcium antagonists. Fill, M.D., Best, P.M. J. Gen. Physiol. (1989) [Pubmed]
  3. Energy liberation and chemical change in frog skeletal muscle during single isometric tetanic contractions. Homsher, E., Rall, J.A., Wallner, A., Ricchiuti, N.V. J. Gen. Physiol. (1975) [Pubmed]
  4. In vitro activity and killing effect of temporin A on nosocomial isolates of Enterococcus faecalis and interactions with clinically used antibiotics. Giacometti, A., Cirioni, O., Kamysz, W., D'Amato, G., Silvestri, C., Del Prete, M.S., Licci, A., Lukasiak, J., Scalise, G. J. Antimicrob. Chemother. (2005) [Pubmed]
  5. Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs (Rana catesbeiana). I. Morphological responses of lungs, skin and gills. Burggren, W., Mwalukoma, A. J. Exp. Biol. (1983) [Pubmed]
  6. Spinal administration of adrenergic agents produces analgesia in amphibians. Stevens, C.W., Brenner, G.M. Eur. J. Pharmacol. (1996) [Pubmed]
  7. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana). Hedrick, M.S., Chen, A.K., Jessop, K.L. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. (2005) [Pubmed]
  8. Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Wada, K., Dechesne, C.J., Shimasaki, S., King, R.G., Kusano, K., Buonanno, A., Hampson, D.R., Banner, C., Wenthold, R.J., Nakatani, Y. Nature (1989) [Pubmed]
  9. Intracellular calcium ions decrease the affinity of the GABA receptor. Inoue, M., Oomura, Y., Yakushiji, T., Akaike, N. Nature (1986) [Pubmed]
  10. Prolactin receptors in Rana catesbeiana during development and metamorphosis. White, B.A., Nicoll, C.S. Science (1979) [Pubmed]
  11. Thyrotropin-releasing hormone: abundance in the skin of the frog, Rana pipiens. Jackson, I.M., Reichlin, S. Science (1977) [Pubmed]
  12. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. Rybak, S.M., Pearson, J.W., Fogler, W.E., Volker, K., Spence, S.E., Newton, D.L., Mikulski, S.M., Ardelt, W., Riggs, C.W., Kung, H.F., Longo, D.L. J. Natl. Cancer Inst. (1996) [Pubmed]
  13. The role of acetylcholinesterase in denervation supersensitivity in the frog cardiac ganglion. Streichert, L.C., Sargent, P.B. J. Physiol. (Lond.) (1992) [Pubmed]
  14. Effect of Ca2+ channel blockers on K+ contractures in twitch fibres of the frog (Rana pipiens). Gamboa-Aldeco, R., Huerta, M., Stefani, E. J. Physiol. (Lond.) (1988) [Pubmed]
  15. Cryoprotection by urea in a terrestrially hibernating frog. Costanzo, J.P., Lee, R.E. J. Exp. Biol. (2005) [Pubmed]
  16. Effect of anoxia and adenosine on cerebral blood flow in the leopard frog (Rana pipiens). Söderström-Lauritzsen, V., Nilsson, G.E., Lutz, P.L. Neurosci. Lett. (2001) [Pubmed]
  17. Toxicity of cadmium, endosulfan, and atrazine in adrenal steroidogenic cells of two amphibian species, Xenopus laevis and Rana catesbeiana. Goulet, B.N., Hontela, A. Environ. Toxicol. Chem. (2003) [Pubmed]
  18. Control of chromosome behavior in amphibian oocytes. II. The effect of inhibitors of RNA and protein synthesis on the induction of chromosome condensation in transplanted brain nuclei by oocyte cytoplasm. Ziegler, D., Masui, Y. J. Cell Biol. (1976) [Pubmed]
  19. Nonanesthetic alcohols dissolve in synaptic membranes without perturbing their lipids. Miller, K.W., Firestone, L.L., Alifimoff, J.K., Streicher, P. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  20. Isolation of peptide hormones from the pancreas of the bullfrog (Rana catesbeiana). Amino acid sequences of pancreatic polypeptide, oxyntomodulin, and two glucagon-like peptides. Pollock, H.G., Hamilton, J.W., Rouse, J.B., Ebner, K.E., Rawitch, A.B. J. Biol. Chem. (1988) [Pubmed]
  21. The Rana catesbeiana rcr gene encoding a cytotoxic ribonuclease. Tissue distribution, cloning, purification, cytotoxicity, and active residues for RNase activity. Huang, H.C., Wang, S.C., Leu, Y.J., Lu, S.C., Liao, Y.D. J. Biol. Chem. (1998) [Pubmed]
  22. Sequence variation in transcription factor IIIA. Gaskins, C.J., Hanas, J.S. Nucleic Acids Res. (1990) [Pubmed]
  23. Effect of luminal acid on intracellular pH in oxynticopeptic cells in intact frog gastric mucosa. Yanaka, A., Carter, K.J., Goddard, P.J., Silen, W. Gastroenterology (1991) [Pubmed]
  24. Luminal material in microtubules of frog olfactory axons: structure and distribution. Burton, P.R. J. Cell Biol. (1984) [Pubmed]
  25. Molecular characteristics of cytostatic factors in amphibian egg cytosols. Shibuya, E.K., Masui, Y. Development (1989) [Pubmed]
  26. Isolation and characterization of Rana catesbeiana lectin and demonstration of the lectin-binding glycoprotein of rodent and human tumor cell membranes. Nitta, K., Takayanagi, G., Kawauchi, H., Hakomori, S. Cancer Res. (1987) [Pubmed]
  27. The neuronal endomembrane system. I. Direct links between rough endoplasmic reticulum and the cis element of the Golgi apparatus. Lindsey, J.D., Ellisman, M.H. J. Neurosci. (1985) [Pubmed]
  28. Fine structure of a periciliary ridge complex of frog retinal rod cells revealed by ultrahigh resolution scanning electron microscopy. Peters, K.R., Palade, G.E., Schneider, B.G., Papermaster, D.S. J. Cell Biol. (1983) [Pubmed]
  29. Actin in the photoreceptor connecting cilium: immunocytochemical localization to the site of outer segment disk formation. Chaitin, M.H., Schneider, B.G., Hall, M.O., Papermaster, D.S. J. Cell Biol. (1984) [Pubmed]
  30. Localization of 17beta-hydroxysteroid dehydrogenase and characterization of testosterone in the brain of the male frog. Mensah-Nyagan, A.M., Feuilloley, M., Do-Rego, J.L., Marcual, A., Lange, C., Tonon, M.C., Pelletier, G., Vaudry, H. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  31. Reversible dissociation of a carbamoyl phosphate synthase-aspartate transcarbamoylase-dihydroorotase complex from ovarian eggs of Rana catesbeiana: effect of uridine triphosphate and other modifiers. Kent, R.J., Lin, R.L., Sallach, H.J., Cohen, P.P. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  32. Skin peptide tyrosine-tyrosine, a member of the pancreatic polypeptide family: isolation, structure, synthesis, and endocrine activity. Mor, A., Chartrel, N., Vaudry, H., Nicolas, P. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  33. Molecular cloning of cDNAs encoding the human bombesin-like peptide neuromedin B. Chromosomal localization and comparison to cDNAs encoding its amphibian homolog ranatensin. Krane, I.M., Naylor, S.L., Helin-Davis, D., Chin, W.W., Spindel, E.R. J. Biol. Chem. (1988) [Pubmed]
  34. A cloned frog vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide receptor exhibits pharmacological and tissue distribution characteristics of both VPAC1 and VPAC2 receptors in mammals. Alexandre, D., Anouar, Y., Jegou, S., Fournier, A., Vaudry, H. Endocrinology (1999) [Pubmed]
  35. Cyclic lactam alpha-melanotropin analogues of Ac-Nle4-cyclo[Asp5, D-Phe7,Lys10] alpha-melanocyte-stimulating hormone-(4-10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. Hruby, V.J., Lu, D., Sharma, S.D., Castrucci, A.L., Kesterson, R.A., al-Obeidi, F.A., Hadley, M.E., Cone, R.D. J. Med. Chem. (1995) [Pubmed]
  36. Structural basis of inhibitor affinity to variants of human carbonic anhydrase II. Nair, S.K., Krebs, J.F., Christianson, D.W., Fierke, C.A. Biochemistry (1995) [Pubmed]
  37. Ribonuclease activity of sialic acid-binding lectin from Rana catesbeiana eggs. Nitta, K., Oyama, F., Oyama, R., Sekiguchi, K., Kawauchi, H., Takayanagi, Y., Hakomori, S., Titani, K. Glycobiology (1993) [Pubmed]
  38. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. Simmaco, M., Mignogna, G., Barra, D., Bossa, F. J. Biol. Chem. (1994) [Pubmed]
  39. Isolation of terminal cisternae of frog skeletal muscle. Calcium storage and release properties. Volpe, P., Bravin, M., Zorzato, F., Margreth, A. J. Biol. Chem. (1988) [Pubmed]
  40. Intracellular signals for developmental hemoglobin switching. Ramseyer, L.T., Barker-Harrel, J., Smith, D.J., McBride, K.A., Jarman, R.N., Broyles, R.H. Dev. Biol. (1989) [Pubmed]
  41. Localization of LHRH in neurons in frog brain (Rana pipiens and Rana catesbeiana). Alpert, L.C., Brawer, J.R., Jackson, I.M., Reichlin, S. Endocrinology (1976) [Pubmed]
  42. Opsin immunocytochemical characterization of different types of photoreceptors in the frog pineal organ. Vigh-Teichmann, I., Vigh, B. J. Pineal Res. (1990) [Pubmed]
 
WikiGenes - Universities