The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Endothelin-1-induced prostaglandin E2-EP2, EP4 signaling regulates vascular endothelial growth factor production and ovarian carcinoma cell invasion.

Cyclooxygenase (COX)-1- and COX-2-derived prostaglandins are implicated in the development and progression of several malignancies. We have recently demonstrated that treatment of ovarian carcinoma cells with endothelin-1 (ET-1) induces expression of both COX-1 and COX-2, which contributes to vascular endothelial growth factor (VEGF) production. In this study, we show that in HEY and OVCA 433 ovarian carcinoma cells, ET-1, through the binding with ETA receptor (ETAR), induces prostaglandin E2 (PGE2) production, as the more represented PG types, and increases the expression of PGE2 receptor type 2 (EP2) and type 4 (EP4). The use of pharmacological EP agonists and antagonists indicates that ET-1 and PGE2 stimulate VEGF production principally through EP2 and EP4 receptors. At the mechanistic level, we prove that the induction of PGE2 and VEGF by ET-1 involves Src-mediated epidermal growth factor receptor transactivation. Finally, we demonstrate that ETAR- mediated activation of PGE2-dependent signaling participates in the regulation of the invasive behavior of ovarian carcinoma cells by activating tumor- associated matrix metalloproteinase. These results implicate EP2 and EP4 receptors in the induction of VEGF expression and cell invasiveness by ET-1 and provide a mechanism by which ETAR/ET-1 can promote and interact with PGE2-dependent machinery to amplify its proangiogenic and invasive phenotype in ovarian carcinoma cells. Pharmacological blockade of ETAR can therefore represent an additional strategy to control PGE2 signaling, which has been associated with ovarian carcinoma progression.[1]

References

 
WikiGenes - Universities