The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Phosphorylation regulates KSR1 stability, ERK activation, and cell proliferation.

Kinase suppressor of Ras ( KSR) is a molecular scaffold that interacts with the components of the Raf/ MEK/ ERK kinase cascade and positively regulates ERK signaling. Phosphorylation of KSR1, particularly at Ser(392), is a critical regulator of KSR1 subcellular localization and ERK activation. We examined the role of phosphorylation of both Ser(392) and Thr(274) in regulating ERK activation and cell proliferation. We hypothesized that KSR1 phosphorylation is involved in generating signaling specificity through the Raf/ MEK/ ERK kinase cascade in response to stimulation by different growth factors. In fibroblasts, platelet-derived growth factor stimulation induces sustained ERK activation and promotes S-phase entry. Treatment with epidermal growth factor induces transient ERK activation but fails to drive cells into S phase. Mutation of Ser(392) and Thr(274) (KSR1.TVSA) promotes sustained ERK activation and cell cycle progression with either platelet-derived growth factor or epidermal growth factor treatment. KSR1(-/-) mouse embryo fibroblasts expressing KSR1.TVSA proliferate two times faster and grow to a higher density than cells expressing the same level of wild-type KSR1. In addition, KSR1.TVSA is more stable than wild-type KSR1. These data demonstrate that phosphorylation and stability of the molecular scaffold KSR1 are critical regulators of growth factor-specific responses that promote cell proliferation.[1]


  1. Phosphorylation regulates KSR1 stability, ERK activation, and cell proliferation. Razidlo, G.L., Kortum, R.L., Haferbier, J.L., Lewis, R.E. J. Biol. Chem. (2004) [Pubmed]
WikiGenes - Universities