The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Assessment of lung perfusion impairment in patients with pulmonary artery-occlusive and chronic obstructive pulmonary diseases with noncontrast electrocardiogram-gated fast-spin-echo perfusion MR imaging.

PURPOSE: To evaluate the ability of noncontrast electrocardiogram (ECG)-gated fast-spin-echo (FSE) perfusion MR images for defining regional lung perfusion impairment, as compared with technetium (Tc)-99m macroaggregated albumin (MAA) single-photon emission computed tomography (SPECT) images. MATERIALS AND METHODS: After acquisition of ECG-gated multiphase FSE MR images during cardiac cycles at selected lung levels in nine healthy volunteers, 11 patients with pulmonary artery-occlusive diseases, and 15 patients with chronic obstructive pulmonary diseases (COPD), the subtracted perfusion-weighted (PW) MR images were obtained from the two-phase images of the minimum lung signal intensity (SI) during systole and the maximum SI during diastole, and were compared with SPECT images. RESULTS: ECG-gated PW images showed uniform but posture-dependent perfusion gradient in normal lungs and visualized the various sizes of perfusion defects in affected lungs. These defect sites were nearly consistent with those on SPECT images, with a significant correlation for the affected-to-unaffected perfusion contrast (r = 0.753; P < 0.0001). These MR images revealed that the pulmonary arterial blood flow in the affected areas of COPD was relatively preserved as compared with pulmonary artery-occlusive diseases, and also showed significant decrease in blood flow, even in the areas with homogeneous perfusion on SPECT images in patients with focal pulmonary emphysema. CONCLUSION: This noninvasive MR technique allows qualitative and quantitative assessment of lung perfusion, and may better characterize regional perfusion impairment in pulmonary artery-occlusive diseases and COPD.[1]

References

 
WikiGenes - Universities