The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus.

In enterococci and other pathogenic bacteria, high-level resistance to vancomycin and other glycopeptide antibiotics requires the action of the van genes, which direct the synthesis of peptidoglycan terminating in the depsipeptide D-alanyl-D-lactate, in place of the usual D-Ala-D-Ala. The Actinoplanes teichomyceticus tcp cluster, devoted to the biosynthesis of the glycopeptide antibiotic teicoplanin, contains van genes associated to a murF-like sequence (murF2). We show that A. teichomyceticus contains also a house-keeping murF1 gene, capable of complementing a temperature sensitive Escherichia coli murF mutant. MurF1, expressed in Streptomyces lividans, can catalyze the addition of either D-Ala-D-Ala or D-Ala-D-Lac to the UDP-N-acetyl-muramyl-L-Ala-D-Glu-d-Lys. However, similarly expressed MurF2 shows a small enzymatic activity only with D-Ala-D-lactate. Introduction of a single copy of the entire set of van genes confers resistance to teicoplanin-type glycopeptides to S. coelicolor.[1]

References

  1. Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus. Serina, S., Radice, F., Maffioli, S., Donadio, S., Sosio, M. FEMS Microbiol. Lett. (2004) [Pubmed]
 
WikiGenes - Universities