The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A variant 2677A allele of the MDR1 gene affects fexofenadine disposition.

BACKGROUND AND OBJECTIVES: There have been considerable disagreements regarding the influence of MDR1 (ABCB1) polymorphisms on the disposition of P-glycoprotein (P-gp) substrates. We speculated that the unknown function of the A allele of exon 21 G2677T/A (Ala893Ser/Thr) provides one of the reasons for the contradictory results. This study was performed to clarify the effects of major MDR1 gene polymorphisms, including a variant A allele in exon 21, on fexofenadine pharmacokinetics. METHODS: We investigated the occurrence of 3 high-frequency single-nucleotide polymorphisms (SNPs) in exons 12 (C1236T), 21 (G2677T/A), and 26 (C3435T) of the MDR1 gene in 232 healthy Koreans, using a polymerase chain reaction-restriction fragment length polymorphism method, and performed haplotype analysis on these 3 SNPs. A single oral dose of 180 mg fexofenadine hydrochloride was administered to 33 healthy Korean male volunteers, who were divided into 6 groups based on the MDR1 genotype for the G2677T/A polymorphism in exon 21 and the C3435T polymorphism in exon 26. RESULTS: A strong linkage disequilibrium was observed among the 3 SNPs. The frequencies of the 4 major haplotypes, 1236C-2677A-3435C, C-G-C, T-G-C, and T-T-T, were 16.4%, 18.6%, 21.6%, and 32.2%, respectively. Fexofenadine disposition varied considerably among the groups. In the 2677AA/3435CC genotype group (n=3), the values of area under the concentration-time curve from time 0 to 24 hours [AUC(0-24)] were significantly lower (P=.014) than those of the other 5 genotype groups (GG/CC, GT/CT, TT/TT, GA/CC, and TA/CT). As compared with the 2677GG/3435CC subjects, the AUC(0-24) values were 17% lower in the 2677AA/3435CC subjects and 47% higher in the 2677TT/3435TT subjects (GG/CC versus AA/CC versus TT/TT, 4017 +/- 1137 ng . h/mL versus 3315 +/- 958 ng . h/mL versus 5934 +/- 2,064 ng . h/mL; P=.018). By stratification for genotypes at position 3435, homozygous 3435TT subjects were found to have significantly higher AUC(0-24) (P=.024) and maximum plasma concentration (P=.040) values than CC subjects [AUC(0-24), 5934 +/- 2064 ng . h/mL versus 3998 +/- 1241 ng . h/mL; maximum plasma concentration, 958 +/- 408 ng/mL versus 673 +/- 242 ng/mL]. CONCLUSIONS: The plasma concentrations of fexofenadine after a single oral administration were lower in 2677AA/3435CC subjects than in subjects with the other 5 genotype combinations of the SNPs of G2677T/A and C3435T. These findings confirm the importance of analyzing MDR1 haplotypes and provide a plausible explanation for the conflicting results regarding the effect of MDR1 polymorphisms on the disposition of P-gp substrates.[1]


  1. A variant 2677A allele of the MDR1 gene affects fexofenadine disposition. Yi, S.Y., Hong, K.S., Lim, H.S., Chung, J.Y., Oh, D.S., Kim, J.R., Jung, H.R., Cho, J.Y., Yu, K.S., Jang, I.J., Shin, S.G. Clin. Pharmacol. Ther. (2004) [Pubmed]
WikiGenes - Universities