The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Allegra     2-[4-[1-hydroxy-4-[4- (hydroxy-diphenyl...

Synonyms: Telfast, Fexofendine, fexofenadine, CHEMBL914, SureCN4900, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Terfenadine carboxylate


Psychiatry related information on Terfenadine carboxylate


High impact information on Terfenadine carboxylate

  • The effect of verapamil on CYP3A and P-gp activity was determined by examining its effect on its own disposition and on the disposition of fexofenadine, respectively [10].
  • The aim of this study was to compare the inhibitory effects of different transporting inhibitors on fexofenadine pharmacokinetics [11].
  • The 300-mL volume of grapefruit juice diminished the AUC of fexofenadine variably among individuals [12].
  • OBJECTIVE: The purpose of this study was to elucidate the potential clinical relevance and mechanism(s) of action of 2 different volumes of grapefruit juice on the reduction of bioavailability of fexofenadine, a substrate of organic anion transporting polypeptides [12].
  • RESULTS: Verapamil treatment significantly increased the peak plasma concentration by 2.9-fold (95% confidence interval [CI], 2.4- to 4.0-fold) and the area under the plasma concentration-time curve from time 0 to infinity [AUC(0-infinity)] of fexofenadine by 2.5-fold (95% CI, 2.0- to 3.3-fold) [11].

Chemical compound and disease context of Terfenadine carboxylate


Biological context of Terfenadine carboxylate


Anatomical context of Terfenadine carboxylate


Associations of Terfenadine carboxylate with other chemical compounds


Gene context of Terfenadine carboxylate

  • Likewise, there was no relationship between the observed induction in MDR1 mRNA expression in lymphocytes and the observed increase in fexofenadine oral clearance in twenty volunteers [30].
  • On HEL fibroblasts, fexofenadine only was able to inhibit ICAM-1 upregulation induced by IFN gamma [31].
  • These results suggest that the biliary excretion of fexofenadine is mediated by unknown transporters distinct from P-gp, Mrp2, and Bcrp [32].
  • Only hOAT3-HEK showed a significantly greater accumulation of fexofenadine than that in vector-HEK, which was saturable with K(m) and V(max) values of 70.2 muM and 120 pmol/min/mg protein, respectively [33].
  • Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans [34].

Analytical, diagnostic and therapeutic context of Terfenadine carboxylate

  • The oral pharmacokinetics of 120 mg fexofenadine was assessed with water, 25%-strength grapefruit juice, or normal-strength grapefruit, orange, or apple juices (1.2 L over 3 hours) in a randomized 5-way crossover study in 10 healthy subjects [25].
  • The concentrations of fexofenadine in the perfusate and plasma were measured by HPLC with ultraviolet and mass detection, respectively [19].
  • METHODS: Twelve young volunteers (6 men and 6 women; age range, 22 to 35 years) and twelve elderly volunteers (6 men and 6 women; age range, 65 to 76 years) received a 60-mg oral dose of fexofenadine before and after treatment with 600 mg of oral rifampin for 6 days [18].
  • OBJECTIVE: This randomized, placebo-controlled, parallel-group, double-blind study was performed to assess the efficacy and safety of fexofenadine in children with seasonal allergic rhinitis [35].
  • RESULTS: Fexofenadine treatment of sensitized mice prevented the development of airway hyperresponsiveness in both the primary sensitization and challenge, as well as in the adoptive transfer experiments [36].


  1. QT lengthening and arrhythmias associated with fexofenadine. Giraud, T. Lancet (1999) [Pubmed]
  2. A double-blind, placebo-controlled trial of fexofenadine HCl in the treatment of chronic idiopathic urticaria. Finn, A.F., Kaplan, A.P., Fretwell, R., Qu, R., Long, J. J. Allergy Clin. Immunol. (1999) [Pubmed]
  3. Comparison of the effects of terfenadine with fexofenadine on nasal provocation tests with allergen. Terrien, M.H., Rahm, F., Fellrath, J.M., Spertini, F. J. Allergy Clin. Immunol. (1999) [Pubmed]
  4. Effects of fexofenadine on T-cell function in a murine model of allergen-induced airway inflammation and hyperresponsiveness. Gelfand, E.W., Cui, Z.H., Takeda, K., Kanehiro, A., Joetham, A. J. Allergy Clin. Immunol. (2003) [Pubmed]
  5. Effects of fexofenadine, diphenhydramine, and alcohol on driving performance. A randomized, placebo-controlled trial in the Iowa driving simulator. Weiler, J.M., Bloomfield, J.R., Woodworth, G.G., Grant, A.R., Layton, T.A., Brown, T.L., McKenzie, D.R., Baker, T.W., Watson, G.S. Ann. Intern. Med. (2000) [Pubmed]
  6. The systemic safety of fexofenadine HCl. Mason, J., Reynolds, R., Rao, N. Clin. Exp. Allergy (1999) [Pubmed]
  7. An evaluation of the effects of high-dose fexofenadine on the central nervous system: a double-blind, placebo-controlled study in healthy volunteers. Hindmarch, I., Shamsi, Z., Kimber, S. Clin. Exp. Allergy (2002) [Pubmed]
  8. The effects of fexofenadine on reaction time, decision-making, and driver behavior. Potter, P.C., Schepers, J.M., Van Niekerk, C.H. Ann. Allergy Asthma Immunol. (2003) [Pubmed]
  9. Allergy medication in Japanese volunteers: treatment effect of single doses on nocturnal sleep architecture and next day residual effects. Boyle, J., Eriksson, M., Stanley, N., Fujita, T., Kumagi, Y. Current medical research and opinion. (2006) [Pubmed]
  10. The effect of short- and long-term administration of verapamil on the disposition of cytochrome P450 3A and P-glycoprotein substrates. Lemma, G.L., Wang, Z., Hamman, M.A., Zaheer, N.A., Gorski, J.C., Hall, S.D. Clin. Pharmacol. Ther. (2006) [Pubmed]
  11. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Yasui-Furukori, N., Uno, T., Sugawara, K., Tateishi, T. Clin. Pharmacol. Ther. (2005) [Pubmed]
  12. Effect of grapefruit juice volume on the reduction of fexofenadine bioavailability: possible role of organic anion transporting polypeptides. Dresser, G.K., Kim, R.B., Bailey, D.G. Clin. Pharmacol. Ther. (2005) [Pubmed]
  13. Comparative effects of desloratadine, fexofenadine, and levocetirizine on nasal adenosine monophosphate challenge in patients with perennial allergic rhinitis. Lee, D.K., Gardiner, M., Haggart, K., Fujihara, S., Lipworth, B.J. Clin. Exp. Allergy (2004) [Pubmed]
  14. A comparison of once daily fexofenadine versus the combination of montelukast plus loratadine on domiciliary nasal peak flow and symptoms in seasonal allergic rhinitis. Wilson, A.M., Orr, L.C., Coutie, W.J., Sims, E.J., Lipworth, B.J. Clin. Exp. Allergy (2002) [Pubmed]
  15. Fexofenadine hydrochloride, 180 mg, exhibits equivalent efficacy to cetirizine, 10 mg, with less drowsiness in patients with moderate-to-severe seasonal allergic rhinitis. Hampel, F., Ratner, P., Mansfield, L., Meeves, S., Liao, Y., Georges, G. Ann. Allergy Asthma Immunol. (2003) [Pubmed]
  16. Addition of fexofenadine to a topical corticosteroid reduces the pruritus associated with atopic dermatitis in a 1-week randomized, multicentre, double-blind, placebo-controlled, parallel-group study. Kawashima, M., Tango, T., Noguchi, T., Inagi, M., Nakagawa, H., Harada, S. Br. J. Dermatol. (2003) [Pubmed]
  17. Evaluation of cytokines in nasal secretions after nasal antigen challenge: lack of influence of antihistamines. Bensch, G.W., Nelson, H.S., Borish, L.C. Ann. Allergy Asthma Immunol. (2002) [Pubmed]
  18. The effect of rifampin administration on the disposition of fexofenadine. Hamman, M.A., Bruce, M.A., Haehner-Daniels, B.D., Hall, S.D. Clin. Pharmacol. Ther. (2001) [Pubmed]
  19. Multiple transport mechanisms involved in the intestinal absorption and first-pass extraction of fexofenadine. Tannergren, C., Petri, N., Knutson, L., Hedeland, M., Bondesson, U., Lennernäs, H. Clin. Pharmacol. Ther. (2003) [Pubmed]
  20. A variant 2677A allele of the MDR1 gene affects fexofenadine disposition. Yi, S.Y., Hong, K.S., Lim, H.S., Chung, J.Y., Oh, D.S., Kim, J.R., Jung, H.R., Cho, J.Y., Yu, K.S., Jang, I.J., Shin, S.G. Clin. Pharmacol. Ther. (2004) [Pubmed]
  21. The clinical pharmacology of fexofenadine in children. Simons, F.E., Bergman, J.N., Watson, W.T., Simons, K.J. J. Allergy Clin. Immunol. (1996) [Pubmed]
  22. Effect of itraconazole on the pharmacokinetics and pharmacodynamics of fexofenadine in relation to the MDR1 genetic polymorphism. Shon, J.H., Yoon, Y.R., Hong, W.S., Nguyen, P.M., Lee, S.S., Choi, Y.G., Cha, I.J., Shin, J.G. Clin. Pharmacol. Ther. (2005) [Pubmed]
  23. Effect of fexofenadine on eosinophil-induced changes in epithelial permeability and cytokine release from nasal epithelial cells of patients with seasonal allergic rhinitis. Abdelaziz, M.M., Devalia, J.L., Khair, O.A., Bayram, H., Prior, A.J., Davies, R.J. J. Allergy Clin. Immunol. (1998) [Pubmed]
  24. Efficacy and safety profile of fexofenadine HCl: a unique therapeutic option in H1-receptor antagonist treatment. Meeves, S.G., Appajosyula, S. J. Allergy Clin. Immunol. (2003) [Pubmed]
  25. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Dresser, G.K., Bailey, D.G., Leake, B.F., Schwarz, U.I., Dawson, P.A., Freeman, D.J., Kim, R.B. Clin. Pharmacol. Ther. (2002) [Pubmed]
  26. Double-blind, placebo-controlled study comparing the efficacy and safety of fexofenadine hydrochloride (120 and 180 mg once daily) and cetirizine in seasonal allergic rhinitis. Howarth, P.H., Stern, M.A., Roi, L., Reynolds, R., Bousquet, J. J. Allergy Clin. Immunol. (1999) [Pubmed]
  27. Pharmacokinetics, pharmacodynamics, and tolerance of single- and multiple-dose fexofenadine hydrochloride in healthy male volunteers. Russell, T., Stoltz, M., Weir, S. Clin. Pharmacol. Ther. (1998) [Pubmed]
  28. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarization on the electrocardiogram. Benton, R.E., Honig, P.K., Zamani, K., Cantilena, L.R., Woosley, R.L. Clin. Pharmacol. Ther. (1996) [Pubmed]
  29. The histamine-cytokine network in allergic inflammation. Marone, G., Granata, F., Spadaro, G., Genovese, A., Triggiani, M. J. Allergy Clin. Immunol. (2003) [Pubmed]
  30. Induction of multidrug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampin. Asghar, A., Gorski, J.C., Haehner-Daniels, B., Hall, S.D. Drug Metab. Dispos. (2002) [Pubmed]
  31. Terfenadine and fexofenadine reduce in vitro ICAM-1 expression on human continuous cell lines. Paolieri, F., Battifora, M., Riccio, A.M., Bertolini, C., Cutolo, M., Bloom, M., Ciprandi, G., Canonica, G.W., Bagnasco, M. Ann. Allergy Asthma Immunol. (1998) [Pubmed]
  32. P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion. Tahara, H., Kusuhara, H., Fuse, E., Sugiyama, Y. Drug Metab. Dispos. (2005) [Pubmed]
  33. Inhibition of oat3-mediated renal uptake as a mechanism for drug-drug interaction between fexofenadine and probenecid. Tahara, H., Kusuhara, H., Maeda, K., Koepsell, H., Fuse, E., Sugiyama, Y. Drug Metab. Dispos. (2006) [Pubmed]
  34. Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Shimizu, M., Fuse, K., Okudaira, K., Nishigaki, R., Maeda, K., Kusuhara, H., Sugiyama, Y. Drug Metab. Dispos. (2005) [Pubmed]
  35. Fexofenadine is efficacious and safe in children (aged 6-11 years) with seasonal allergic rhinitis. Wahn, U., Meltzer, E.O., Finn, A.F., Kowalski, M.L., Decosta, P., Hedlin, G., Scheinmann, P., Bachert, C., Rosado Pinto, J.E., Baena-Cagnani, C., Potter, P., Simons, F.E., Ruuth, E. J. Allergy Clin. Immunol. (2003) [Pubmed]
  36. Fexofenadine modulates T-cell function, preventing allergen-induced airway inflammation and hyperresponsiveness. Gelfand, E.W., Cui, Z.H., Takeda, K., Kanehiro, A., Joetham, A. J. Allergy Clin. Immunol. (2002) [Pubmed]
WikiGenes - Universities