The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Involvement of corticostriatal glutamatergic terminals in striatal dopamine release elicited by stimulation of delta-opioid receptors.

We have previously shown that striatal dopamine release induced locally by a delta-opioid receptor agonist was totally inhibited by a glutamate N-methyl-D-aspartate receptor antagonist, indicating the involvement of glutamatergic receptors in this effect. The aim of the present study was to specify this mechanism. Firstly, we investigated the effect of [D-Pen2,D-Pen5]-enkephalin (DPDPE) on glutamate release in rats by intrastriatal microdialysis. The infusion of DPDPE (10 microm) enhanced the glutamate content in dialysate by approximately 34%, an effect which did not appear to result from inhibition of glutamate uptake. We then considered the consequences of a unilateral thermocoagulation of the frontal cortex on either glutamate or dopamine release induced by stimulation of delta-opioid receptors 2 days later. This lesion, which decreased the glutamate content in ipsilateral striatum by approximately 30%, totally prevented the increase in dialysate levels of glutamate induced by DPDPE. Moreover, whereas DPDPE (10 microm) was found to increase the striatal dopamine release in intact animals by approximately 59%, this effect was also completely suppressed by the cortical lesion. Finally, we studied the effect of the lesion on the [3H]-DPDPE binding to striatal membranes prepared from the whole striatum. In the ipsilateral striatum a significant decrease in this [3H]-DPDPE binding (by approximately 18%) was found 2 days after the lesion. Our results indicate that the increase in striatal dopamine release induced by DPDPE probably depends on glutamate release from corticostriatal glutamatergic afferents in response to the stimulation of delta-opioid receptors located on terminals of these neurons.[1]


WikiGenes - Universities