The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Calcium-independent calcium/calmodulin-dependent protein kinase II in the adult Drosophila CNS enhances the training of pheromonal cues.

Calcium/calmodulin-dependent protein kinase II (CaMKII) is abundant in the CNS and is crucial for cellular and behavioral plasticity. It is thought that the ability of CaMKII to autophosphorylate and become Ca2+ independent allows it to act as a molecular memory switch. We have shown previously that inhibition of Drosophila CaMKII leads to impaired performance in the courtship conditioning associative memory assay, but it was unknown whether the constitutive form of the kinase had a special role in learning. In this study, we use a tripartite transgenic system combining GAL4/UAS with the tetracycline-off system to spatially and temporally manipulate levels of Ca2+-independent CaMKII activity in Drosophila. We find an enhancement of information processing during the training period with Ca2+-independent, but not Ca2+-dependent, CaMKII. During training, control animals have a lag before active suppression of courtship begins. Animals expressing Ca2+-independent CaMKII have no lag, implying that there is a threshold level of Ca2+-independent activity that must be present to suppress courtship. This is the first demonstration, in any organism, of enhanced behavioral plasticity with overexpression of constitutively active CaMKII. Anatomical studies indicate that transgene expression in antennal lobes and extrinsic mushroom body neurons drives this behavioral enhancement. Interestingly, immediate memory was unaffected by expression of T287D CaMKII in mushroom bodies, although previous studies have shown that CaMKII activity is required in this brain region for memory formation. These results suggest that the biochemical mechanisms of CaMKII-dependent memory formation are threshold based in only a subset of neurons.[1]

References

 
WikiGenes - Universities