Nedd4-2 phosphorylation induces serum and glucocorticoid- regulated kinase (SGK) ubiquitination and degradation.
Serum and glucocorticoid-regulated kinase (SGK) plays a key role in the regulation of epithelial Na+ transport. SGK phosphorylates Nedd4-2, an E3 ubiquitin-protein ligase that targets the epithelial Na+ channel (ENaC) for degradation. Phosphorylation increases Na+ transport by reducing Nedd4-2 binding to ENaC, which increases ENaC expression at the cell surface. Thus, SGK expression must be tightly controlled to maintain Na+ homeostasis. This occurs in part by regulation of SGK transcription; a variety of signals including steroid hormones (aldosterone and glucocorticoids) increase SGK levels by inducing transcription of SGK. However, SGK has a short half-life, suggesting that SGK levels might also be controlled by regulation of SGK degradation. Here we found that SGK degradation is mediated in part by Nedd4-2. Consistent with this model, overexpression of Nedd4-2 decreased steady-state levels of SGK in a dose-dependent manner by increasing SGK ubiquitination and degradation in the 26S proteasome. Conversely, silencing of Nedd4-2 by RNA interference stabilized SGK. Nedd4-2 phosphorylation potentiates SGK degradation; degradation was reduced by Nedd4-2 and SGK mutations that disrupt phosphorylation or by inhibition of SGK kinase activity. Together with previous work, the data support a model in which SGK and Nedd4-2 regulate one another in a reciprocal manner. SGK phosphorylates Nedd4-2, which reduces Nedd4-2 binding and inhibition of ENaC. Conversely, phosphorylation increases Nedd4-2- mediated degradation of SGK. Thus, by phosphorylating Nedd4-2, SGK induces its own degradation. This feedback inhibition may fine-tune the regulation of epithelial Na+ absorption.[1]References
- Nedd4-2 phosphorylation induces serum and glucocorticoid-regulated kinase (SGK) ubiquitination and degradation. Zhou, R., Snyder, P.M. J. Biol. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg